Journal of Peking University (Health Sciences) ›› 2021, Vol. 53 ›› Issue (4): 721-727. doi: 10.19723/j.issn.1671-167X.2021.04.017

Previous Articles     Next Articles

Application of lymphocytes test in peripheral blood of patients with systemic sclerosis during the treatment

MA Xiang-bo1,2,ZHANG Xue-wu1,JIA Ru-lin1,GAO Ying3,LIU Hong-jiang1,LIU Yu-fang1,4,LI Ying-ni1,Δ()   

  1. 1. Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing 100044, China
    2. Department of Rheumatology and Immunology, Handan First Hospital, Handan 056002, Hebei, China
    3. Department of Endocrinology, Peking University People’s Hospital, Beijing 100044, China
    4. Department of Rheumatology and Immunology, Second Hospital of Shanxi Medical University,Taiyuan 030000, China
  • Received:2020-07-26 Online:2021-08-18 Published:2021-08-25
  • Contact: Ying-ni LI E-mail:ying8436@aliyun.com
  • Supported by:
    National Natural Science Foundation of China(81701614);Peking Univercity People’s Hospital Research and Development Funds(RDC2019-01)

RICH HTML

  

Abstract:

Objective: To explore the significance of lymphocytes in systemic sclerosis (SSc), by detecting the levels of T lymphocytes, B lymphocytes and natural killer (NK) cells, and analyzing the correlation between the lymphocytes and clinical laboratory indexes. Methods: The numbers and proportion of T, CD4+T, CD8+T, B, and NK cells were detected by flow cytometry in peripheral blood of 32 SSc patients who had taken immunosuppressive drugs and 30 healthy controls (HC). The comparison of the lymphocyte subsets in SSc with them in the HC groups, and the correlation between the lymphocytes and other clinical and laboratory indicators were analyzed by the relevant statistical analysis. Results: Compared with the HC group, the numbers of T, CD4+T, CD8+T, and NK cells in peripheral blood of SSc group,who had taken immunosuppressive drugs, were significantly decreased (P<0.05). More-over, the proportion of NK cells in peripheral blood of the SSc group was also significantly lower than that in the HC group (P=0.004). In addition, all the lymphocyte subsets were decreased in peripheral blood of more than 65% of the SSc patients who had taken immunosuppressive drugs. Compared with CD4+T normal group, the positivity of Raynaud’s phenomenon, erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) was significantly increased in CD4+T reduction group, respectively (P=0.024, P<0.001, P=0.018). ESR was higher in CD8+T reduction group than CD8+T normal group (P=0.022). The prevalence of fingertip ulcer was significantly increased in B cell decrease group (P=0.019). Compared with NK cell normal group, the prevalence of fingertip ulcer was significantly increased in NK cell lower group (P=0.033), IgM was remarkablely decreased yet (P=0.049). The correlation analysis showed that ESR was negatively correlated with the counts of T lymphocytes (r=-0.455, P=0.009), CD4+T lymphocytes (r=-0.416, P=0.018), CD8+T lymphocytes (r=-0.430, P=0.014), B cells (r=-0.366, P=0.039). Conclusion: The number of CD4+T, CD8+T, B, and NK cells significantly decreased in peripheral blood of SSc patients who had used immunosuppressive drugs, some lymphocyte subsets might be related with Raynaud’s phenomenon and fingertip ulcer, and reflected the disease activity by negatively correlated with ESR and CRP; the numbers of lymphocyte subsets in peripheral blood should be detected regularly in SSc patients who had taken immunosuppressive drugs.

Key words: Systemic sclerosis, T lymphocytes, B lymphocytes, Natural killer cells

CLC Number: 

  • R593.25

Table 1

Comparison of T lymphocyte subsets, B cells and NK cells in SSc patients and HC group"

Group Number of lymphocytes/(×106/L)
T cells CD4+T cells CD8+T cells B cells NK cells
HC 1 539(1 296-1704) 835(678-926) 566(477-721) 228(169-293) 262(216-336)
SSc 1 010(554-1368) 639(355-803) 347(205-529) 141(73-262) 143(59-179)
P <0.001 0.017 0.001 0.022 <0.001

Table 2

Percentage of T lymphocyte subsets, B cells and NK cells of peripheral blood between SSc group and HCgroup"

Group Percentage of cells/%
T cells CD4+T cells CD8+T cells B cells NK cells
HC 73.61±6.36 41.41±7.28 29.65±6.28 11.29±3.83 14.27±4.79
SSc 76.62±10.14 48.05±11.35 28.80±9.60 12.16±6.88 10.02±5.43
P 0.099 0.017 0.260 0.573 0.004

Table 3

Relationship between CD4+T lymphocyte cells reduction and clinical laboratory index"

Items Reduction group (n=14) Normal group (n=18) P
Age/years, $\bar{x}±s$ 51.64±14.56 49.72±13.17 0.699
Women, n(%) 13 (92.86) 18 (100) 1.000
Disease duration/years, M(P25, P75) 8.50 (1, 28) 3.75 (0.5, 20) 0.085
Raynaud’s phenomenon, n(%) 14 (100) 12 (66.67) 0.024
Diffuse cutaneous changes, n(%) 13 (92.86) 12 (66.67) 0.104
Fingertip ulcer, n(%) 3 (21.43) 4 (22.22) 1.000
Pulmonary interstitial fibrosis, n(%) 12 (83.71) 11 (61.11) 0.235
ANA, n(%) 13 (92.86) 16 (88.89) 1.000
Scl-70, n(%) 5 (35.71) 6 (33.33) 1.000
ESR/(mm/h), M(P25, P75) 25 (18.00, 41.50) 9.00 (7.50, 14.50) <0.001
CRP/(mg/L), M(P25, P75) 7.93 (1.76, 14.72) 2.21 (0.47, 3.14) 0.018
IgG/(g/L), M(P25, P75) 14.25 (10.20, 19.70) 11.05 (9.65, 15.40) 0.180
IgM/(g/L), M(P25, P75) 0.81 (0.64, 1.05) 0.85 (0.66, 1.04) 0.955
IgA/(g/L), $\bar{x}±s$ 2.11±1.28 2.24±1.49 0.798
C3/(g/L), $\bar{x}±s$ 0.85±0.24 0.89±0.17 0.583
C4/(g/L), $\bar{x}±s$ 0.19±0.08 0.19±0.07 0.979

Table 4

Relationship between CD8+T lymphocyte cells reduction and clinical laboratory index"

Reduction group (n=15) Normal group (n=17) P
Age/years, $\bar{x}±s$ 47.76±13.79 53.73±13.10 0.221
Women, n(%) 15 (100) 16 (94.12) 0.531
Disease duration/years, M(P25, P75) 4 (0.5, 20) 6.5 (1, 28) 0.189
Raynaud’s phenomenon, n(%) 12 (70.59) 14 (93.33) 0.178
Diffuse cutaneous changes, n(%) 13 (76.47) 12 (80) 0.355
fingertip ulcer, n(%) 3 (17.65) 4 (26.66) 0.678
Pulmonary interstitial fibrosis, n(%) 12 (70.59) 11 (73.33) 1.000
ANA, n(%) 14 (93.33) 15 (88.24) 1.000
Scl-70, n(%) 5 (33.33) 6 (35.29) 1.000
ESR/(mm/h), M(P25, P75) 23.00 (11.50, 27.50) 9.00 (7.50, 17.00) 0.022
CRP/(mg/L), M(P25, P75) 7.15 (0.71, 12.83) 2.43 (0.55, 3.14) 0.142
IgG/(g/L), M(P25, P75) 13.50 (9.30, 16.40) 11.20 (9.50, 15.70) 0.551
IgM/(g/L), M(P25, P75) 0.77 (0.52, 0.94) 0.91 (0.72, 1.18) 0.370
IgA/(g/L), $\bar{x}±s$ 1.96±1.27 2.39±1.48 0.387
C3/(g/L), $\bar{x}±s$ 0.87±0.20 0.88±0.21 0.940
C4/(g/L), $\bar{x}±s$ 0.20±0.07 0.18±0.08 0.520

Table 5

Relationship between B cells reduction and clinical laboratory index"

Reduction group (n=10) Normal group (n=22) P
Age/years, $\bar{x}±s$ 56.00±12.61 48.09±13.57 0.129
Women, n(%) 10 (100) 21 (95.45) 1.000
Disease duration/years, M(P25, P75) 10.5 (1, 28) 4 (0.5, 20) 0.052
Raynaud’s phenomenon, n(%) 10 (100) 16 (72.73) 0.142
Diffuse cutaneous changes, n(%) 10 (100) 15 (68.18) 0.069
fingertip ulcer, n(%) 5 (50) 2 (9.09) 0.019
Pulmonary interstitial fibrosis, n(%) 8 (80) 15 (68.18) 0.681
ANA, n(%) 8 (80.00) 21 (95.45) 0.224
Scl-70, n(%) 4 (40.00) 7 (31.82) 0.703
ESR/(mm/h), M(P25, P75) 21.00 (10.00, 26.00) 10.50 (7.50, 20.00) 0.092
CRP/(mg/L), M(P25, P75) 6.78 (0.97, 9.9) 2.50 (0.55, 5.19) 0.325
IgG/(g/L), M(P25, P75) 12.25 (10.15, 14.4) 11.70 (9.50, 15.70) 0.889
IgM/(g/L), M(P25, P75) 0.81 (0.52, 0.94) 0.87 (0.72, 1.18) 0.562
IgA/(g/L), $\bar{x}±s$ 2.79±1.74 1.91±1.12 0.092
C3/(g/L), $\bar{x}±s$ 0.90±0.21 0.86±0.20 0.639
C4/(g/L), $\bar{x}±s$ 0.21±0.07 0.19±0.08 0.491

Table 6

Relationship between NK cells reduction and clinical laboratory index"

Reduction group (n=15) Normal group (n=17) P
Age/years, $\bar{x}±s$ 53.00±14.05 48.41±12.23 0.349
Women, n(%) 15 (100) 16 (94.12) 1.000
Disease duration/years, M(P25, P75) 6.5 (1, 28) 5 (0.5, 20) 0.455
Raynaud’s phenomenon, n(%) 13 (86.67) 13 (82.35) 0.659
Diffuse cutaneous changes, n(%) 12 (80) 13 (82.35) 1.000
fingertip ulcer, n(%) 6 (40) 1 (5.88) 0.033
Pulmonary interstitial fibrosis, n(%) 11 (73.33) 12 (70.59) 1.000
ANA, n(%) 14 (93.33) 15 (88.24) 1.000
Scl-70, n(%) 5 (33.33) 6 (35.29) 1.000
ESR/(mm/h), M(P25, P75) 23.00 (10.5, 40.00) 10.00 (7.50, 18.00) 0.069
CRP/(mg/L), M(P25, P75) 5.83 (0.97, 12.12) 2.57 (0.55, 3.86) 0.242
IgG/(g/L), M(P25, P75) 11.70 (9.25, 15.60) 11.70 (9.80, 15.70) 0.655
IgM/(g/L), M(P25, P75) 0.77 (0.52, 0.94) 0.93 (0.76, 1.39) 0.049
IgA/(g/L), $\bar{x}±s$ 2.43±1.53 1.97±1.23 0.348
C3/(g/L), $\bar{x}±s$ 0.85±0.24 0.90±0.16 0.548
C4/(g/L), $\bar{x}±s$ 0.21±0.09 0.18±0.06 0.365

Table 7

Correlation between the number of T lymphocyte subsets, B cells and NK cells and ESR, CRP, IgA, IgG, IgM, C3, C4"

Items ESR CRP IgA IgG IgM C3 C4
r P r P r P r P r P r P r P
T cells -0.455 0.009 -0.292 0.104 0.112 0.541 -0.079 0.669 -0.024 0.898 0.317 0.077 -0.022 0.903
CD4+T cells -0.416 0.018 -0.235 0.195 0.112 0.541 -0.182 0.381 -0.142 0.437 0.301 0.095 -0.008 0.964
CD8+T cells -0.430 0.014 -0.325 0.070 0.021 0.909 0.030 0.869 0.148 0.418 0.290 0.107 -0.021 0.911
B cells -0.366 0.039 -0.218 0.231 0.051 0.782 0.209 0.251 0.281 0.120 0.138 0.452 -0.289 0.108
NK cells -0.196 0.283 -0.093 0.363 0.043 0.817 0.161 0.378 0.338 0.059 0.162 0.376 -0.069 0.708
[1] Denton CP, Khanna D. Systemic sclerosis [J]. Lancet, 2017, 390(10103):1685-1699.
doi: 10.1016/S0140-6736(17)30933-9
[2] Tyndall AJ, Bannert B, Vonk M, et al. Causes and risk factors for death in systemic sclerosis: A study from the EULAR Scleroderma Trials and Research (EUSTAR) database [J]. Ann Rheum Dis, 2010, 69(10):1809-1815.
doi: 10.1136/ard.2009.114264
[3] van den Hoogen F, Khanna D, Fransen J, et al. Classification criteria for systemic sclerosis: An American college of rheumatology/European league against rheumatism collaborative initiative [J]. Ann Rheum Dis, 2013, 72(11):1747-1755.
doi: 10.1136/annrheumdis-2013-204424 pmid: 24092682
[4] Bossini-Castillo L, Martin JE, Broen J, et al. Confirmation of TNIP1 but not RHOB and PSORSICI as systemic sclerosis risk factors in a large independent replication study [J]. Ann Rheum Dis, 2013, 72(4):602-607.
doi: 10.1136/annrheumdis-2012-201888 pmid: 22896740
[5] Marou E, Liaskos C, Efthymiou G, et al. Increased immunoreactivity against human cytomegalovirus UL83 in systemic sclerosis [J]. Clin Exp Rheumatol, 2017, 35(Suppl 106):31-34.
[6] Marie I, Gehanno JF, Bubenheim M, et al. Systemic sclerosis and exposure to heavy metals: A case control study of 100 patiens and 300 controls [J]. Autoimmun Rev, 2017, 16(3):223-230.
doi: S1568-9972(17)30014-9 pmid: 28137480
[7] Borghini A, Poscia A, Bosello S, et al. Environmental pollution by benzene and PM10 and clinical manifestation of systemic sclerosis:A correlation study [J]. Int J Environ Res Public Health, 2017, 14(11):1297.
doi: 10.3390/ijerph14111297
[8] Joseph CG, Darrah E, Shah AA, et al. Association of the autoimmune disease scleroderma with an immunologic response to cancer [J]. Science, 2014, 343(6167):152-157.
doi: 10.1126/science.1246886
[9] Cipriani P, Marrelli A, Liakouli V, et al. Cellular players in angiogenesis during the course of systemic sclerosis [J]. Autoimmu Rev, 2011, 10(10):641-646.
doi: 10.1016/j.autrev.2011.04.016
[10] Walker UA, Tyndall A, Czirjak L, et al. Clinical risk assessment of organ manifestations in systemic sclerosis: A report from the EULAR scleroderma trials and research group database [J]. Ann Rheum Dis, 2007, 66(6):754-763.
pmid: 17234652
[11] Matucci-Cerinic M, Kahaleh B, Wigley FM. Review: Evidence that systemic sclerosis is a vascular disease [J]. Arthritis Rheum, 2013, 65(8):1953-1962.
doi: 10.1002/art.37988
[12] Liu M, Wu W, Sun X, et al. New insights into CD4+ T cell abnormalities in systemic sclerosis [J]. Cytokine Growth Factor Rev, 2016, 28:31-36.
doi: 10.1016/j.cytogfr.2015.12.002
[13] Yang XQ, Yang J, Xing XJ, et al. Increased frequency of Th17 cells in systemic sclerosis is related to disease activity and collagen overproduction [J]. Arthritis Res Ther, 2014, 16(1):R4.
doi: 10.1186/ar4430
[14] Yoshizaki A, Yanaba K, Iwata Y, et al. Cell adhesion molecules regulate fibrotic process via Th1/Th2/Th17 cell balance in a bleomycin-induced scleroderma model [J]. Immunology, 2010, 185(4):2502-2515.
[15] Bogoch ER, Gross DK. Surgery of the hand in patients with systemic sclerosis: outcomes and considerations [J]. Rheumatology, 2005, 32(4):642-648.
doi: 10.1093/rheumatology/32.7.642
[16] Sakkas LI, Boqdanos DP. Systemic sclerosis: new evidence reenforces the role of B cells [J]. Autoimmu Rev, 2016, 15(2):155-161.
doi: 10.1016/j.autrev.2015.10.005
[17] Yoshizaki A. Pathogenic roles of B lymphocytes in systemic sclerosis [J]. Immunol Lett, 2018, 195:76-82.
doi: S0165-2478(17)30430-3 pmid: 29307688
[18] Wang MH, Chandra M. B-cells in systemic sclerosis: Emerging evidence from genetics to phenotypes [J]. Curr Opin Rheumatol, 2015, 27(6):537-541.
doi: 10.1097/BOR.0000000000000215
[19] Dumoitier N, Chaigne B, Régent A, et al. Scleroderma peripheral B lymphocytes secrete interleukin-6 and transforming growth factor β and activate fibroblasts [J]. Arthritis Rheumatol, 2017, 69(5):1078-1089.
doi: 10.1002/art.v69.5
[20] Katz P, Mitchell SR, Cupps TR, et al. Suppression of B cell responses by natural killer cells is mediated through direct effects on T cells [J]. Cell Immunol, 1989, 119(1):130-142.
pmid: 2784076
[21] Fullard N, O’Reilly S. Role of innate immune system in systemic sclerosis [J]. Semin Immunopathol, 2015, 37(5):511-517.
doi: 10.1007/s00281-015-0503-7 pmid: 26159672
[22] Cossu M, van Bon L, Nierkens S, et al. The magnitude of cytokine production by stimulated CD56+ cells is associated with early stages of systemic sclerosis [J]. Clin Immunol, 2016, 173:76-80.
doi: 10.1016/j.clim.2016.09.004
[1] Jiayi TIAN, Yixue GUO, Xia ZHANG, Xiaolin SUN, Jing HE. Flow cytometry analysis of normal range of natural killer cells and their subsets in peripheral blood of healthy Chinese adults [J]. Journal of Peking University (Health Sciences), 2024, 56(5): 839-844.
[2] Xiang-ge ZHAO,Jia-qing LIU,Hui-na HUANG,Zhi-min LU,Zi-ran BAI,Xia LI,Jing-jing QI. Interferon-α mediating the functional damage of CD56dimCD57+natural killer cells in peripheral blood of systemic lupus erythematosuss [J]. Journal of Peking University (Health Sciences), 2023, 55(6): 975-981.
[3] Wen-gen LI,Xiao-dong GU,Rui-qiang WENG,Su-dong LIU,Chao CHEN. Expression and clinical significance of plasma exosomal miR-34-5p and miR-142-3p in systemic sclerosis [J]. Journal of Peking University (Health Sciences), 2023, 55(6): 1022-1027.
[4] Zhuo-hua LIN,Ru-yi CAI,Yang SUN,Rong MU,Li-gang CUI. Methodology and clinical use of superb microvascular imaging in assessing micro-circulation changes of fingertips in systemic sclerosis [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 636-640.
[5] Jing ZHAO,Feng SUN,Yun LI,Xiao-zhen ZHAO,Dan XU,Ying-ni LI,Yu-hui LI,Xiao-lin SUN. Significance of anti-tubulin-α-1C autoantibody in systemic sclerosis [J]. Journal of Peking University (Health Sciences), 2020, 52(6): 1009-1013.
[6] Hong-lin ZHU,Qian DU,Wei-lin CHEN,Xiao-xia ZUO,Quan-zhen LI,Si-jia LIU. Altered serum cytokine expression profile in systemic sclerosis and its regulatory mechanisms [J]. Journal of Peking University(Health Sciences), 2019, 51(4): 716-722.
[7] Yun-bo XIE,Ji-yuan ZHANG,Mei-ling DU,Fan-ping MENG,Jun-liang FU,Li-min LIU,Song-shan WANG,Rui QU,Fang LIAN,Fei QIAO,Yang-liu CHEN,Ying-ying GAO,Ruo-nan XU,Ming SHI,Fu-sheng WANG. Efficacy and peripheral immunity analysis of allogeneic natural killer cells therapy in patients with hepatocellular carcinoma [J]. Journal of Peking University(Health Sciences), 2019, 51(3): 591-595.
[8] Yu-bing XIAO,Mu-yao GUO,Xiao-xia ZUO. Immunometabolism and systemic lupus erythematosus [J]. Journal of Peking University(Health Sciences), 2018, 50(6): 1120-1124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!