Journal of Peking University (Health Sciences) ›› 2021, Vol. 53 ›› Issue (6): 1099-1106. doi: 10.19723/j.issn.1671-167X.2021.06.016

Previous Articles     Next Articles

Generation and characterization of Cyp4v3 gene knockout mice

JIA Rui-xuan,JIANG Shang-wei,ZHAO Lin,YANG Li-ping()   

  1. Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing 100191, China
  • Received:2019-11-11 Online:2021-12-18 Published:2021-12-13
  • Contact: Li-ping YANG E-mail:alexlipingyang@bjmu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(81770966)

RICH HTML

  

Abstract:

Objective: Bietti crystalline dystrophy (BCD) is a rare degenerative eye disease caused by mutations in the CYP4V2 gene, and Cyp4v3 is the murine ortholog to CYP4V2. To better understand the molecular pathogenesis of this disease and to explore the potential treatment we have established a Cyp4v3 knock-out mouse model. Methods: Cyp4v3 -/- mice were generated by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 in embryonic stem cells of C57BL/6J mice. Ocular morphologic characteristics were evaluated via fundus imaging, histologic analysis of rods and cones via immunofluorescence, and phalloidin stain to observe retinal pigment epithelium (RPE) in whole-mounts, electroretinogram (ERG) was also conducted to examine the retinal function. Results: The characteristic features of BCD recurred in the Cyp4v3 -/- mice, including retinal crystalline deposits, atrophy and degeneration of RPE cells, and ERG amplitude decline of dark and light adapted a- and b- wave; however, the immunofluorescence stain of rod and cone cells did not show obvious differences when compared with the wild type (WT) mice. In the early stage of the disease, no crystal-like deposits were found in the fundus, ERG detection of the retinal function did not find a significant decline, and the morphological structure and quantity of the neural retina and RPE did not change significantly. Crystalline deposits occurred and converged when the Cyp4v3 -/- mice at the end of 6 months, and the deposits disappeared when the Cyp4v3 -/- mice at the end of 12 months. The ERG amplitude started to decline when the Cyp4v3 -/- mice at the end of 6 months and deteriorated at the end of 12 months. The RPE cells of the 12-month old Cyp4v3 -/- mice showed irregular shape by phalloidin staining of F-actin. The Cyp4v3 -/- mice behaved normally and were viable and fertile when maintained under specific pathogen-free (SPF) housing conditions. Conclusion: Just like BCD patients, the disease progress of Cyp4v3 -/- mouse is correlated with the age, which provides a good model for pathogenesis and gene therapy study in the future. The atrophy and degeneration of RPE take the lead in progressing of the disease, but the mechanism is not clear yet.

Key words: Bietti crystalline dystrophy, Mouse model, Electroretinogram

CLC Number: 

  • R774.1

Figure 1

Genomic DNA of Cyp4v3-/-mouse deleting 11 bp c.278_288delCGCGGTCTCCC WT, wild type."

Figure 2

Color fundus photography of different ages of Cyp4v3-/-mouse and WT mouse A, color fundus photography of WT mouse; B, color fundus photography of Cyp4v3-/-mouse in 3 months; C, color fundus photography of Cyp4v3-/-mouse in 6 months; D, color fundus photography of Cyp4v3-/-mouse in 12 months. WT, wild type."

Figure 3

ERG responses of different ages of Cyp4v3-/-mouse and WT mouse A, ERG responses of Cyp4v3-/-mouse and WT mouse in 3 months (n=6); B, ERG responses of Cyp4v3-/-mouse and WT mouse in 6 months (n=5); C, ERG responses of Cyp4v3-/-mouse and WT mouse in 12 months (n=7). *P<0.05, ▲P<0.01, WT mouse vs. Cyp4v3-/-mouse. WT, wild type; ERG, electroretinogram."

Figure 4

Immunofluorescence staining of different ages of Cyp4v3-/-mouse and WT mouse in 1D4 and PNA antibody (×40) WT, wild type; PNA, peanut agglutinin antibody."

Figure 5

Phalloidin staining of different ages of Cyp4v3-/-mouse and WT mouse and statistics analysis of RPE cells A, phalloidin staining of 3, 6, 12 months old Cyp4v3-/-mouse and WT mouse (×40); B, analysis of the RPE cells (n=3). *P<0.05, WT mouse vs. Cyp4v3-/-mouse. WT, wild type; RPE, retinal pigment epithelium."

[1] Vargas M, Mitchell A, Yang P, et al. Bietti crystalline dystrophy[M]. Seattle: University of Washington,Seattle, 2012: 12.
[2] Bietti G. Ueber familiaeres Vorkommen von ‘Retinitis punctata albescens’ (verbunden mit ‘Dystrophia marginalis cristallinea corneae’), Glitzern des Glaskoerpers und anderen degenerativen Augenveraenderungen[J]. Klin Monatsbl Augenheilkd, 1937, 99:737-745.
[3] Xiao X, Mai G, Li S, et al. Identification of CYP4V2 mutation in 21 families and overview of mutation spectrum in Bietti crystalline corneoretinal dystrophy[J]. Biochem Biophys Res Commun, 2011, 409(2):181-186.
doi: 10.1016/j.bbrc.2011.04.112
[4] Meng XH, Guo H, Xu HW, et al. Identification of novel CYP4V2 gene mutations in 92 Chinese families with Bietti’s crystalline corneoretinal dystrophy[J]. Mol Vis, 2014, 20:1806-1814.
[5] Fong AMY, Koh A, Lee K, et al. Bietti’s crystalline dystrophy in Asians: Clinical, angiographic and electrophysiological charac-teristics[J]. Int Ophthalmol, 2009, 29(6):459-470.
doi: 10.1007/s10792-008-9266-7
[6] Kaiser-Kupfer MI, Chan CC, Markello TC, et al. Clinical biochemical and pathologic correlations in Bietti’s crystalline dystrophy[J]. Am J Ophthalmol, 1994, 118(5):569-582.
pmid: 7977570
[7] Yuzawa M, Mae Y, Matsui M. Bietti’s crystalline retinopathy[J]. Ophthalmic Genetics, 1986, 7(1):9-20.
[8] Wilson DJ, Weleber RG, Klein ML, et al. Bietti’s crystalline dystrophy: A clinicopathologic correlative study[J]. Arch Ophthalmol, 1989, 107(2):213-221.
doi: 10.1001/archopht.1989.01070010219026
[9] Bernauer W, Daicker B. Bietti’s corneal-retinal dystrophy: A 16-year progression[J]. Retina, 1992, 12(1):18-20.
doi: 10.1097/00006982-199212010-00004
[10] Rossi S, Testa F, Li A, et al. Clinical and genetic features in Italian Bietti crystalline dystrophy patients[J]. Br J Ophthalmol, 2013, 97(2):174-179.
doi: 10.1136/bjophthalmol-2012-302469
[11] Toto L, Carpineto P, Parodi MB, et al. Spectral domain optical coherence tomography and in vivo confocal microscopy imaging of a case of Bietti’s crystalline dystrophy[J]. Clin Exp Optom, 2013, 96(1):39-45.
doi: 10.1111/j.1444-0938.2012.00784.x
[12] Saatci AO, Doruk HC, Yaman A, et al. Spectral domain optical coherence tomographic findings of Bietti crystalline dystrophy[J]. J Ophthalmol, 2014, 2014:739271.
[13] Özkiriş A, Evereklioğlu C, et al. A comparison of electroretinographic values of patients with Bietti’s crystalline dystrophy with normal individuals[J]. Erciyes Tip Dergisi, 2004, 26(3):113-118.
[14] Lai TY, Ng TK, Tam PO, et al. Genotype phenotype analysis of Bietti’s crystalline dystrophy in patients with CYP4V2 mutations[J]. Invest Ophthalmol Vis Sci, 2007, 48(11):5212-5220.
doi: 10.1167/iovs.07-0660
[15] Mansour AM, Uwaydat SH, Chan CC. Long-term follow-up in Bietti crystalline dystrophy[J]. Eur J Ophthalmol, 2007, 17(4):680-682.
pmid: 17671952
[16] Li A, Jiao X, Munier FL, et al. Bietti crystalline corneoretinal dystrophy is caused by mutations in the novel gene CYP4V2[J]. Am J Hum Genet, 2004, 74(5):817-826.
doi: 10.1086/383228
[17] Shan M, Dong B, Zhao X, et al. Novel mutations in the CYP4V2 gene associated with Bietti crystalline corneoretinal dystrophy[J]. Mol Vis, 2005, 11:738-743.
[18] Yin H, Jin C, Fang X, et al. Molecular analysis and phenotypic study in 14 Chinese families with Bietti crystalline dystrophy[J]. PLoS One, 2014, 9(4):e94960.
doi: 10.1371/journal.pone.0094960
[19] Yin X, Yang L, Chen N, et al. Identification of CYP4V2 mutation in 36 Chinese families with Bietti crystalline corneoretinal dystrophy[J]. Exp Eye Res, 2016, 146:154-162.
doi: 10.1016/j.exer.2016.03.007
[20] Darki F, Fekri S, Farhangmehr S, et al. CYP4V2 mutation screening in an Iranian Bietti crystalline dystrophy pedigree and evidence for clustering of CYP4V2 mutations[J]. J Curr Ophthalmol, 2019, 31(2):172-179.
doi: 10.1016/j.joco.2019.01.007
[21] Nakano M, Kelly EJ, Rettie AE. Expression and characterization of CYP4V2 as a fatty acid omega-hydroxylase[J]. Drug Metab Dispos, 2009, 37(11):2119-2122.
doi: 10.1124/dmd.109.028530
[22] Lai TY, Chu KO, Chan KP, et al. Alterations in serum fatty acid concentrations and desaturase activities in Bietti crystalline dystrophy unaffected by CYP4V2 genotypes[J]. Invest Ophthalmol Vis Sci, 2010, 51(2):1092-1097.
doi: 10.1167/iovs.09-3665
[23] Kumar S. Comparative modeling and molecular docking of orphan human CYP4V2 protein with fatty acid substrates: Insights into substrate specificity[J]. Bioinformation, 2011, 7(7):360-365.
doi: 10.6026/bioinformation
[24] Lockhart CM, Smith TB, Yang P, et al. Longitudinal characterisation of function and structure of Bietti crystalline dystrophy: Report on a novel homozygous mutation in CYP4V2[J]. Br J Ophthalmol, 2018, 102(2):187-194.
doi: 10.1136/bjophthalmol-2016-309696
[25] Lockhart CM, Nakano M, Rettie AE, et al. Generation and characterization of a murine model of Bietti crystalline dystrophy[J]. Invest Ophthalmol Vis Sci, 2014, 55(9):5572-5581.
doi: 10.1167/iovs.13-13717
[26] Hirashima T, Miyata M, Ishihara K, et al. Choroidal vasculature in Bietti crystalline dystrophy with CYP4V2 mutations and in retinitis pigmentosa with EYS mutations[J]. Invest Ophthalmol Vis Sci, 2017, 58(10):3871-3878.
doi: 10.1167/iovs.17-21515
[27] Xiong W, Wu DM, Xue Y, et al. AAV cis-regulatory sequences are correlated with ocular toxicity[J]. Proc Natl Acad Sci USA, 2019, 116(12):5785-5794.
doi: 10.1073/pnas.1821000116
[28] Strauss O. The retinal pigment epithelium in visual function[J]. Physiol Rev, 2005, 85(3):845-881.
pmid: 15987797
[29] Rando RR. The Biochemistry of the visual cycle[J]. Chem Rev, 2001, 101(7):1881-1896.
pmid: 11710234
[30] Nakano M, Kelly EJ, Wiek C, et al. CYP4V2 in Bietti’s crystalline dystrophy: Ocular localization, metabolism of omega-3-polyunsaturated fatty acids, and functional deficit of the p.H331P variant[J]. Mol Pharmacol, 2012, 82(4):679-686.
doi: 10.1124/mol.112.080085
[31] Hata M, Ikeda HO, Iwai S, et al. Reduction of lipid accumulation rescues Bietti’s crystalline dystrophy phenotypes[J]. Proc Natl Acad Sci USA, 2018, 115(15):3936-3941.
doi: 10.1073/pnas.1717338115
[1] Jing ZHANG,Jia-gui SONG,Zhen-bin WANG,Yu-qing GONG,Tian-zhuo WANG,Jin-yu ZHOU,Jun ZHAN,Hong-quan ZHANG. Kindlin-2 regulates endometrium development via mTOR and Hippo signaling pathways in mice [J]. Journal of Peking University (Health Sciences), 2022, 54(5): 846-852.
[2] Xiao-wei ZHANG,Hua-qi YIN,Qing LI,Yong-ping ZHAO,BRANDES Kite,Wen-jun BAI,Tao XU. CMTM2 is involved in spermiogenesis in mice [J]. Journal of Peking University(Health Sciences), 2019, 51(2): 228-233.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!