Journal of Peking University (Health Sciences) ›› 2022, Vol. 54 ›› Issue (4): 712-718. doi: 10.19723/j.issn.1671-167X.2022.04.021

Previous Articles     Next Articles

Normative values of cervical sagittal alignment according to the whole spine balance: Based on 126 asymptomatic Chinese young adults

Yan-chao TANG1,Wen-kui ZHAO2,Miao YU1,Xiao-guang LIU1,*()   

  1. 1. Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, China
    2. Pain Medicine Center, Peking University Third Hospital, Beijing 100191, China
  • Received:2021-05-25 Online:2022-08-18 Published:2022-08-11
  • Contact: Xiao-guang LIU E-mail:xglius@vip.sina.com
  • Supported by:
    General Program of the National Natural Science Foundation of China(81972103)

RICH HTML

  

Abstract:

Objective: To explore the normal distribution of cervical sagittal alignment and the relationship between cervical alignment and global spine balance in asymptomatic young adults. Methods: A cohort of 272 asymptomatic Chinese adults (including 161 males and 111 females, with an average age of (23.2±4.4) years, ranging from 18 to 45 years) were prospectively recruited from November 2011 to December 2014. The C0-C2 angle, disk angles from C2-C3 to C6-C7, vertebral angles from C3 to C7, T1 slope, thoracic kyphosis (TK), lumbar lordosis (LL), pelvic incidence (PI), sacral slope (SS), C2-C7 sagittal vertical axis (C2-C7SVA), center of gravity of head to C7SVA (CGH-C7SVA), C7-S1SVA were measured and statistically analyzed. All the subjects were categorized with the Roussouly classification and the cervical morphologies were evaluated as lordotic, straight, sigmoid or kyphotic. Spinal sagittal alignment parameters were compared between different sexes and Roussouly classifications with independent student t test, analysis of variance (ANOVA) or Chi-square test. Correlations between cervical sagittal alignment and global spine sagittal alignment were calculated using the Pearson and Spearman correlation coefficient. Linear regression analysis was performed. Results: Sixty-seven males and 59 females aged from 18 to 30 years old were included in the study. The mean value of C0-C7 was 26.0°±12.8°, composed of 15.2°±6.7° for C0-C2, 9.1°±12.1° for sum of disk angles from C2-C3 to C6-C7, and 1.4°±10.2° for sum of vertebral angles from C3 to C7. C2-C7SVA [(18.6±7.9) mm] and CGH-C7SVA [(22.9±12.3) mm]were offset ideally by C7-S1SVA [(-21.6±31.0) mm]. Males had a larger T1 slope (P < 0.05) and accordingly, a larger cervical lordosis C2-C7 (P < 0.01) and C0-C7 angle (P < 0.01) than females. Males had a smaller C7-S1SVA (P < 0.01) and accordingly, a smaller CGH-C7SVA (P=0.165) than females. Significant difference was found between cervical alignment of different Roussouly types (P < 0.01). In general, a larger LL was consistent with a set of larger TK, C2-C7angle, C0-C7 angle, and vice versa. There was no significant correlation between cervical morphology and the Roussouly classification (Chi-square=10.548, P=0.308). There was significant correlation between cervical alignment and T1 slope (P < 0.01), TK (P < 0.01). There was significant correlation between adjacent segmental angles from T1 slope up to C0-C2 angle (P < 0.05). Conclusion: Normative values of each vertebral angle and disk angle were established. The cervical lordosis occurred mainly at C0-C2 and disk levels, which was influenced by parameters of other parts of the spine, such as T1 slope, TK and the Roussouly classification. There was significant correlation between adjacent disk angles.

Key words: Cervical spine, Sagittal alignment, Disk angle, Vertebral angle, Global spine balance

CLC Number: 

  • R681.5

Figure 1

The measurements of cervical sagittal alignment A, C0-C2 angle; B, vertebral angles from C3 to C7 and disk angles from C2-C3 to C6-C7; C, T1 slope."

Table 1

Mean values of demographic and spinal sagittal alignment parameters stratified by gender"

Parameter and demographics Female (n=59) Male (n=67) P Total (n=126)
Age/years 21.1±2.4 21.6±2.2 0.294 21.4±2.3
Height/mm 163.2±4.4 175.4±5.5 < 0.001* 169.7±7.9
Weight/kg 52.7±6.0 66.3±8.3 < 0.001* 60.0±9.9
BMI 19.8±2.1 21.5±2.1 < 0.001* 20.7±2.3
Cervical alignment
    C0-C2/(°) 15.5±7.3 14.9±6.2 0.480 15.2±6.7
    C2-C3/(°) 1.0±3.3 2.3±3.5 0.034* 1.7±3.5
    C3/(°) 0.2±3.7 0.9±3.4 0.307 0.6±3.5
    C3-C4/(°) 1.3±3.7 1.0±3.8 0.662 1.1±3.7
    C4/(°) -0.9±3.2 0.8±3.6 0.005# 0.0±3.5
    C4-C5/(°) 0.4±2.9 1.2±3.9 0.177 0.8±3.5
    C5/(°) -1.8±3.3 -0.5±3.4 0.027* -1.1±3.4
    C5-C6/(°) 0.9±3.9 1.8±3.3 0.176 1.4±3.6
    C6/(°) -0.6±3.2 -0.3±3.5 0.601 -0.4±3.3
    C6-C7/(°) 4.0±3.6 4.2±3.7 0.810 4.1±3.7
    C7/(°) 2.1±2.8 2.6±2.7 0.230 2.4±2.8
    C2-C7/(°) 6.6±13.1 14.1±13.2 0.002# 10.6±13.6
    C0-C7/(°) 22.6±11.1 28.9±13.5 0.006# 26.0±12.8
    T1 slope/(°) 24.7±7.4 27.4±6.5 0.034* 26.1±7.0
    C2-C7SVA/mm 18.9±6.3 18.3±9.1 0.674 18.6±7.9
    CGH-C7SVA/mm 24.5±11.5 21.4±12.9 0.165 22.9±12.3
Whole spine alignment
    TK/(°) 24.4±7.2 24.8±7.1 0.779 24.6±7.1
    LL/(°) 47.9±9.5 48.1±9.9 0.871 48.0±9.7
    PI/(°) 48.1±8.3 47.6±8.4 0.717 47.8±8.3
    SS/(°) 36.9±6.7 37.9±7.3 0.415 37.4±7.0
    PT/(°) 10.9±5.6 9.7±6.6 0.254 10.3±6.2
    C7-S1 SVA/mm -29.1±30.9 -14.9±29.7 0.009# -21.6±31.0

Figure 2

The distribution of cervical lordosis"

Table 2

Mean values of spinal sagittal alignment parameters stratified by Roussouly classification"

Parameter Type 1 (n=20) Type 2 (n=42) Type 3 (n=42) Type 4 (n=22) P
SS/(°) < 35° < 35° 35°-45° >35° 0.000#
Cervical alignment
    C0-C2/(°) 14.5±7.2 14.1±7.1 16.5±6.2 15.5±6.7 0.426
    C2-C3/(°) 1.3±3.3 2.1±3.8 1.5±3.4 1.6±3.4 0.806
    C3/(°) 2.4±3.4 0.6±3.3 0.4±3.5 -0.6±3.6 0.051
    C3-C4/(°) 1.8±4.3 0.7±3.8 0.7±3.7 2.1±3.2 0.375
    C4/(°) 1.3±3.3 0.0±3.7 -0.2±3.4 -0.8±3.6 0.250
    C4-C5/(°) 1.9±2.9 0.0±4.1 0.5±3.1 2.3±3.1 0.036*
    C5/(°) -0.2±3.4 -1.2±3.2 -1.4±3.4 -1.3±3.9 0.626
    C5-C6/(°) 1.8±2.3 0.6±4.0 1.2±3.4 2.9±3.8 0.088
    C6/(°) 0.9±2.6 -1.1±3.3 -0.5±4.0 0.0±2.2 0.142
    C6-C7/(°) 4.5±3.0 3.9±4.3 3.5±3.0 5.3±3.8 0.246
    C7/(°) 3.3±2.7 2.3±2.6 2.0±3.1 2.3±2.2 0.388
    C2-C7/(°) 18.9±14.1 7.8±14.2 7.7±11.1 13.9±13.5 0.005#
    C0-C7/(°) 33.4±11.5 21.9±14.5 24.7±10.0 29.4±12.2 0.004#
    T1 slope/(°) 27.8±7.2 24.3±7.3 26.7±6.4 27.1±7.0 0.204
    C2-C7 SVA/mm 17.5±9.6 19.3±7.3 19.4±7.9 16.7±7.4 0.499
    CGH-C7 SVA/mm 19.1±15.9 23.3±10.5 24.3±12.5 22.8±11.4 0.485
Whole spine alignment
    TK/(°) 25.9±7.6 20.9±7.1 26.0±6.3 27.8±5.5 0.000#
    LL/(°) 47.3±10.0 43.9±9.1 49.7±9.0 53.3±8.9 0.001#
    PI/(°) 43.3±5.9 43.6±7.0 50.7±7.4 54.7±7.6 0.000#
    SS/(°) 33.0±7.1 34.1±4.3 38.4±5.3 46.0±6.3 0.000#
    PT/(°) 10.4±6.0 9.5±5.5 12.0±6.7 8.5±6.1 0.126
    C7-S1SVA/mm -28.2±27.5 -19.4±31.9 -24.5±33.2 -14.1±27.7 0.436

Table 3

Comparison of cervical morphology between Roussouly classifications"

Items Lordotic Straight Sigmoid Kyphotic Total
Type 1 9 9 0 2 20
Type 2 14 22 0 6 42
Type 3 7 28 2 5 42
Type 4 9 11 1 1 22
Total 39 70 3 14 126

Table 4

Correlation coefficient between cervical sagittal alignment and global spine sagittal alignment"

Items C2-C7 C0-C7 C2-C7SVA CGH-C7SVA
T1 slope 0.419# 0.463# 0.274# 0.209*
TK 0.240# 0.319# 0.166 -0.048
LL 0.015 0.115 0.052 0.026
PI -0.071 -0.020 -0.009 0.045
SS -0.011 0.029 0.019 0.019
C7-S1SVA 0.159 0.058 -0.025 -0.022

Table 5

Correlation coefficient between cervical sagittal alignment parameters and T1 slope"

C0-C2 C2-C3 C3-C4 C4-C5 C5-C6 C6-C7 C2-C7 C0-C7 T1 slope
C0-C2 1 -0.364# -0.206* -0.222* -0.132 -0.113 -0.349# 0.158 0.079
C2-C3 1 0.408# 0.273# 0.128 0.031 0.417# 0.248# 0.058
C3-C4 1 0.544# 0.469# 0.186* 0.525# 0.449# 0.175
C4-C5 1 0.610# 0.215* 0.632# 0.564# 0.322#
C5-C6 1 0.349* 0.488# 0.439# 0.353#
C6-C7 1 0.280# 0.226* 0.074
C2-C7 1 0.870# 0.419#
C0-C7 1 0.463#
T1 slope 1
1 Le Huec JC , Demezon H , Aunoble S . Sagittal parameters of global cervical balance using EOS imaging: normative values from a prospective cohort of asymptomatic volunteers[J]. Eur Spine J, 2015, 24 (1): 63- 71.
doi: 10.1007/s00586-014-3632-0
2 Lee SH , Son ES , Seo EM , et al. Factors determining cervical spine sagittal balance in asymptomatic adults: correlation with spinopelvic balance and thoracic inlet alignment[J]. Spine J, 2015, 15 (4): 705- 712.
doi: 10.1016/j.spinee.2013.06.059
3 Nunez-Pereira S , Hitzl W , Bullmann V , et al. Sagittal balance of the cervical spine: an analysis of occipitocervical and spinopelvic interdependence, with C-7 slope as a marker of cervical and spinopelvic alignment[J]. J Neurosurg Spine, 2015, 23 (1): 16- 23.
doi: 10.3171/2014.11.SPINE14368
4 Sakai K , Yoshii T , Hirai T , et al. Cervical sagittal imbalance is a predictor of kyphotic deformity after laminoplasty in cervical spondylotic myelopathy patients without preoperative kyphotic alignment[J]. Spine (Phila Pa 1976), 2016, 41 (4): 299- 305.
doi: 10.1097/BRS.0000000000001206
5 Kato M , Namikawa T , Matsumura A , et al. Effect of cervical sagittal balance on laminoplasty in patients with cervical myelopathy[J]. Global Spine J, 2017, 7 (2): 154- 161.
doi: 10.1177/2192568217694011
6 Theologis AA , Iyer S , Lenke LG , et al. Cervical and cervicothoracic sagittal alignment according to Roussouly thoracolumbar subtypes[J]. Spine (Phila Pa 1976), 2019, 44 (11): E634- E639.
doi: 10.1097/BRS.0000000000002941
7 Pepke W , Almansour H , Lafage R , et al. Cervical spine alignment following surgery for adolescent idiopathic scoliosis (AIS): A pre-to-post analysis of 81 patients[J]. BMC Surg, 2019, 19 (1): 7.
doi: 10.1186/s12893-019-0471-2
8 Khalil N , Bizdikian AJ , Bakouny Z , et al. Cervical and postural strategies for maintaining horizontal gaze in asymptomatic adults[J]. Eur Spine J, 2018, 27 (11): 2700- 2709.
doi: 10.1007/s00586-018-5753-3
9 Yu M , Zhao WK , Li M , et al. Analysis of cervical and global spine alignment under Roussouly sagittal classification in Chinese cervical spondylotic patients and asymptomatic subjects[J]. Eur Spine J, 2015, 24 (6): 1265- 1273.
doi: 10.1007/s00586-015-3832-2
10 Hardacker JW , Shuford RF , Capicotto PN , et al. Radiographic standing cervical segmental alignment in adult volunteers without neck symptoms[J]. Spine (Phila Pa 1976), 1997, 22 (13): 1472- 1480.
doi: 10.1097/00007632-199707010-00009
11 Ohara A , Miyamoto K , Naganawa T , et al. Reliabilities of and correlations among five standard methods of assessing the sagittal alignment of the cervical spine[J]. Spine (Phila Pa 1976), 2006, 31 (22): 2585.
doi: 10.1097/01.brs.0000240656.79060.18
12 Roussouly P , Gollogly S , Berthonnaud E , et al. Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position[J]. Spine (Phila Pa 1976), 2005, 30 (3): 346- 353.
doi: 10.1097/01.brs.0000152379.54463.65
13 Diebo BG , Challier V , Henry JK , et al. Predicting cervical alignment required to maintain horizontal gaze based on global spinal alignment[J]. Spine (Phila Pa 1976), 2016, 41 (23): 1795- 1800.
doi: 10.1097/BRS.0000000000001698
14 Patwardhan AG , Khayatzadeh S , Havey RM , et al. Cervical sagittal balance: a biomechanical perspective can help clinical practice[J]. Eur Spine J, 2018, 27 (Suppl 1): 25- 38.
15 Nori S , Shiraishi T , Aoyama R , et al. Upper cervical lordosis compensates lower cervical kyphosis to maintain whole cervical lordosis after selective laminectomy[J]. J Clin Neurosci, 2018, 58, 64- 69.
doi: 10.1016/j.jocn.2018.10.049
16 Kim JT , Lee HJ , Choi DY , et al. Sequential alignment change of the cervical spine after anterior cervical discectomy and fusion in the lower cervical spine[J]. Eur Spine J, 2016, 25 (7): 2223- 2232.
doi: 10.1007/s00586-016-4401-z
17 Kim JH , Park JY , Yi S , et al. Anterior cervical discectomy and fusion alters whole-spine sagittal alignment[J]. Yonsei Med J, 2015, 56 (4): 1060- 1070.
doi: 10.3349/ymj.2015.56.4.1060
18 Tang R , Ye IB , Cheung ZB , et al. Age-related changes in cervical sagittal alignment: A radiographic analysis[J]. Spine (Phila Pa 1976), 2019, 44 (19): E1144- E1150.
doi: 10.1097/BRS.0000000000003082
19 Iyer S , Lenke LG , Nemani VM , et al. Variations in occipitocervical and cervicothoracic alignment parameters based on age: A prospective study of asymptomatic volunteers using full-body radiographs[J]. Spine (Phila Pa 1976), 2016, 41 (23): 1837- 1844.
doi: 10.1097/BRS.0000000000001644
20 Yang BS , Lee SK , Song KS , et al. The use of T1 sagittal angle in predicting cervical disc degeneration[J]. Asian Spine J, 2015, 9 (5): 757- 761.
doi: 10.4184/asj.2015.9.5.757
21 Mac-Thiong JM , Roussouly P , Berthonnaud E , et al. Sagittal parameters of global spinal balance: normative values from a prospective cohort of seven hundred nine Caucasian asymptomatic adults[J]. Spine (Phila Pa 1976), 2010, 35 (22): E1193- E1198.
doi: 10.1097/BRS.0b013e3181e50808
22 Lee CS , Chung SS , Kang KC , et al. Normal patterns of sagittal alignment of the spine in young adults radiological analysis in a Korean population[J]. Spine (Phila Pa 1976), 2011, 36 (25): E1648- E1654.
doi: 10.1097/BRS.0b013e318216b0fd
23 Zhu Z , Xu L , Zhu F , et al. Sagittal alignment of spine and pelvis in asymptomatic adults: norms in Chinese populations[J]. Spine (Phila Pa 1976), 2014, 39 (1): E1- E6.
24 Gutman G , Labelle H , Barchi S , et al. Normal sagittal parameters of global spinal balance in children and adolescents: A prospective study of 646 asymptomatic subjects[J]. Eur Spine J, 2016, 25 (11): 3650- 3657.
[1] ZHANG Lu,HU Xiao-hong,CHEN Cheng,CAI Yue-ming,WANG Qing-wen,ZHAO Jin-xia. Analysis of cervical instability and clinical characteristics in treatment-naive rheumatoid arthritis patients [J]. Journal of Peking University (Health Sciences), 2021, 53(6): 1049-1054.
[2] Lu ZHANG,Xiao-hong HU,Qing-wen WANG,Yue-ming CAI,Jin-xia ZHAO,Xiang-yuan LIU. Population distribution and clinical characteristics in rheumatoid arthritis patients with cervical spine instability [J]. Journal of Peking University (Health Sciences), 2020, 52(6): 1034-1039.
[3] Yong-zheng HAN,Feng-yun JING,Mao XU,Xiang-yang GUO. Anesthesia management of cervical chordoma resection: A case report [J]. Journal of Peking University(Health Sciences), 2019, 51(5): 981-983.
[4] Hong HONG,Yu-ting QIAN,Lei FU,Wu WANG,Cheng-hui LI,Yi-qing YIN. Study on the use of CT three-dimensional reconstruction technique for guiding tracheal intubation with rigid fiber bronchoscope in difficult airway [J]. Journal of Peking University(Health Sciences), 2019, 51(5): 870-874.
[5] Chao WU,Zhen-yu WANG,Guo-zhong LIN,Tao YU,Bin LIU,Yu SI,Yi-bo ZHANG,Yuan-chao LI. Biomechanical changes of sheep cervical spine after unilateral hemilaminectomy and different degrees of facetectomy [J]. Journal of Peking University(Health Sciences), 2019, 51(4): 728-732.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!