Journal of Peking University (Health Sciences) ›› 2025, Vol. 57 ›› Issue (5): 821-826. doi: 10.19723/j.issn.1671-167X.2025.05.002

Previous Articles     Next Articles

Artificial intelligence in stomatology: Innovations in clinical practice, research, education, and healthcare management

Xuliang DENG*(), Mingming XU, Chenlin DU   

  1. Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
  • Received:2025-08-05 Online:2025-10-18 Published:2025-08-28
  • Contact: Xuliang DENG

RICH HTML

  

Abstract: In recent years, China has continued to face a high prevalence of oral diseases, along with uneven access to high-quality dental care. Against this backdrop, artificial intelligence (AI), as a data-driven, algorithm-supported, and model-centered technology system, has rapidly expanded its role in transforming the landscape of stomatology. This review summarizes recent advances in the application of AI in stomatology across clinical care, biomedical and materials research, education, and hospital management. In clinical settings, AI has improved diagnostic accuracy, streamlined treatment planning, and enhanced surgical precision and efficiency. In research, machine learning has accelerated the identification of disease biomarkers, deepened insights into the oral microbiome, and supported the development of novel biomaterials. In education, AI has enabled the construction of knowledge graphs, facilitated personalized learning, and powered simulation-based training, driving innovation in teaching methodologies. Meanwhile, in hospital operations, intelligent agents based on large language models (LLMs) have been widely deployed for intelligent triage, structured pre-consultations, automated clinical documentation, and quality control, contributing to more standardized and efficient healthcare delivery. Building on these foundations, a multi-agent collaborative framework centered around an AI assistant for stomatology is gradually emerging, integrating task-specific agents for imaging, treatment planning, surgical navigation, follow-up prediction, patient communication, and administrative coordination. Through shared interfaces and unified knowledge systems, these agents support seamless human-AI collaboration across the full continuum of care. Despite these achievements, the broader deployment of AI still faces challenges including data privacy, model robustness, cross-institution generalization, and interpretability. Addressing these issues will require the development of federated learning frameworks, multi-center validation, causal reasoning approaches, and strong ethical governance. With these foundations in place, AI is poised to move from a supportive tool to a trusted partner in advancing accessible, efficient, and high-quality stomatology services in China.

Key words: Artifical intelligence, Stomatology, Deep leaning, Agent

CLC Number: 

  • R78
1
王兴. 第四次全国口腔健康流行病学调查报告[M]. 北京: 人民卫生出版社, 2018: 1- 243.
2
Righolt AJ , Jevdjevic M , Marcenes W , et al. Global-, regional-, and country-level economic impacts of dental diseases in 2015[J]. J Dent Res, 2018, 97 (5): 501- 507.

doi: 10.1177/0022034517750572
3
Matsuyama Y , Jürges H , Listl S . Causal effect of tooth loss on cardiovascular diseases[J]. J Dent Res, 2023, 102 (1): 37- 44.

doi: 10.1177/00220345221120164
4
Dye BA . The global burden of oral disease: Research and public health significance[J]. J Dent Res, 2017, 96 (4): 361- 363.

doi: 10.1177/0022034517693567
5
Zhou SK , Greenspan H , Davatzikos C , et al. A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises[J]. Proc IEEE Inst Electr Electron Eng, 2021, 109 (5): 820- 838.

doi: 10.1109/JPROC.2021.3054390
6
Huang SC , Pareek A , Jensen M , et al. Self-supervised learning for medical image classification: A systematic review and implementation guidelines[J]. NPJ Digit Med, 2023, 6 (1): 74.

doi: 10.1038/s41746-023-00811-0
7
Sau A , Pastika L , Sieliwonczyk E , et al. Artificial intelligence-enabled electrocardiogram for mortality and cardiovascular risk estimation: A model development and validation study[J]. Lancet Digit Health, 2024, 6 (11): e791- e802.

doi: 10.1016/S2589-7500(24)00172-9
8
Moor M , Banerjee O , Abad ZSH , et al. Foundation models for generalist medical artificial intelligence[J]. Nature, 2023, 616 (7956): 259- 265.

doi: 10.1038/s41586-023-05881-4
9
Du C , Chen X , Wang J , et al. Prompting vision-language models for dental notation aware abnormality detection[M]. Cham: Springer Nature Switzerland, 2024: 687- 697.
10
Panetta K , Rajendran R , Ramesh A , et al. Tufts dental database: A multimodal panoramic X-ray dataset for benchmarking diagnostic systems[J]. IEEE J Biomed Health Inform, 2022, 26 (4): 1650- 1659.

doi: 10.1109/JBHI.2021.3117575
11
Tan M , Cui Z , Li Y , et al. PerioAI: A digital system for periodontal disease diagnosis from an intra-oral scan and cone-beam CT image[J]. Cell Rep Med, 2025, 6 (6): 102186.

doi: 10.1016/j.xcrm.2025.102186
12
Cui Z , Fang Y , Mei L , et al. A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images[J]. Nat Commun, 2022, 13 (1): 2096.

doi: 10.1038/s41467-022-29637-2
13
Xu M, Ye C, Zeng Z, et al. Adopting generative AI with precaution in dentistry: A review and reflection[C]//2024 IEEE International Conference on Digital Health (ICDH). July 7-13, 2024. Shenzhen, China: IEEE, 2024: 244-256.
14
Chen X , Guo J , Ye J , et al. Detection of proximal caries lesions on bitewing radiographs using deep learning method[J]. Caries Res, 2022, 56 (5/6): 455- 463.
15
Chen Z , Yu Y , Liu S , et al. A deep learning and radiomics fusion model based on contrast-enhanced computer tomography improves preoperative identification of cervical lymph node metastasis of oral squamous cell carcinoma[J]. Clin Oral Investig, 2023, 28 (1): 39.

doi: 10.1007/s00784-023-05423-2
16
Liu J , Hao J , Lin H , et al. Deep learning-enabled 3D multimodal fusion of cone-beam CT and intraoral mesh scans for clinically applicable tooth-bone reconstruction[J]. Patterns (NY), 2023, 4 (9): 100825.

doi: 10.1016/j.patter.2023.100825
17
Tian S , Wang M , Yuan F , et al. Efficient computer-aided design of dental inlay restoration: A deep adversarial framework[J]. IEEE Trans Med Imag, 2021, 40 (9): 2415- 2427.

doi: 10.1109/TMI.2021.3077334
18
Yang X , Li X , Luo X , et al. Simplify implant depth prediction as video grounding: A texture perceive implant depth prediction network[M]. Cham: Springer Nature Switzerland, 2024: 606- 615.
19
吴宇佳, 周崇阳, 徐子能, 等. 基于机器学习的可摘局部义齿基牙选择模型的合理性评价[J]. 中国实用口腔科杂志, 2023, 16 (3): 333- 338.
20
Liu Y , Xie R , Wang L , et al. Fully automatic AI segmentation of oral surgery-related tissues based on cone beam computed tomography images[J]. Int J Oral Sci, 2024, 16 (1): 34.

doi: 10.1038/s41368-024-00294-z
21
van Nistelrooij N , Schitter S , van Lierop P , et al. Detecting mandible fractures in CBCT scans using a 3-stage neural network[J]. J Dent Res, 2024, 103 (13): 1384- 1391.

doi: 10.1177/00220345241256618
22
Hu J , Feng Z , Mao Y , et al. A location constrained dual-branch network for reliable diagnosis of jaw tumors and cysts[M]. Cham: Springer International Publishing, 2021: 723- 732.
23
Zhang R , Jie B , He Y , et al. TCFNet: Bidirectional face-bone transformation via a Transformer-based coarse-to-fine point movement network[J]. Med Image Anal, 2025, 105, 103653.

doi: 10.1016/j.media.2025.103653
24
Andlauer R , Wachter A , Schaufelberger M , et al. 3D-guided face manipulation of 2D images for the prediction of post-operative outcome after cranio-maxillofacial surgery[J]. IEEE Trans Image Process, 2021, 30, 7349- 7363.

doi: 10.1109/TIP.2021.3096081
25
Wang X , Xu Z , Tong Y , et al. Detection and classification of mandibular fracture on CT scan using deep convolutional neural network[J]. Clin Oral Investig, 2022, 26 (6): 4593- 4601.

doi: 10.1007/s00784-022-04427-8
26
Han B , Jie B , Zhou L , et al. Statistical and individual characteristics-based reconstruction for craniomaxillofacial surgery[J]. Int J Comput Assist Radiol Surg, 2022, 17 (6): 1155- 1165.

doi: 10.1007/s11548-022-02626-y
27
Pei Y, Liu B, Zha H, et al. Anatomical structure sketcher for cephalograms by bimodal deep learning[C]//Proceedings ofthe British Machine Vision Conference 2013. Bristol: British Machine Vision Association, 2013: 102.1-102.11.
28
Wei G, Cui Z, Liu Y, et al. TANet: towards fully automatic tooth arrangement[C]//European Conference on computer vision. Cham: Springer International Publishing, 2020: 481-497.
29
Fan Y , Wei G , Wang C , et al. Collaborative tooth motion diffusion model in digital orthodontics[J]. Proc AAAI Conf Artif Intell, 2024, 38 (2): 1679- 1687.
30
Tian Y , Jian G , Wang J , et al. A revised approach to orthodontic treatment monitoring from oralscan video[J]. IEEE J Biomed Health Inform, 2023, 27 (12): 5827- 5836.

doi: 10.1109/JBHI.2023.3319361
31
Gong B , Chang Q , Shi T , et al. Research of orthodontic soft tissue profile prediction based on conditional generative adversarial networks[J]. J Dent, 2025, 154, 105570.

doi: 10.1016/j.jdent.2025.105570
32
彭歆, 王海辉, 贾梦琪, 等. 基于机器学习的预后生存阶段预测方法和系统: 中国, CN114496306A[P]. 2022-05-13.
33
Xu Y , Liu X , Cao X , et al. Artificial intelligence: A powerful paradigm for scientific research[J]. Innovation (Camb), 2021, 2 (4): 100179.
34
Xu T , Niu Y , Deng C , et al. Saliva MicroAge: A salivary microbiome based machine learning model for noninvasive aging assessment and health state prediction[J]. iMetaOmics, 2025, 2 (3): e70040.
35
Wang B , Lin P , Zhong Y , et al. Explainable deep learning and virtual evolution identifies antimicrobial peptides with activity against multidrug-resistant human pathogens[J]. Nat Microbiol, 2025, 10 (2): 332- 347.

doi: 10.1038/s41564-024-01907-3
36
Dai Y , Wang P , Mishra A , et al. 3D bioprinting and artificial intelligence-assisted biofabrication of personalized oral soft tissue constructs[J]. Adv Healthc Mater, 2025, 14 (13): e2402727.

doi: 10.1002/adhm.202402727
37
Zhou Y , Ping X , Guo Y , et al. Assessing biomaterial-induced stem cell lineage fate by machine learning-based artificial intelligence[J]. Adv Mater, 2023, 35 (19): e2210637.

doi: 10.1002/adma.202210637
38
Shi M , Mo W , Qi H , et al. Oxygen ion implantation improving cell adhesion on titanium surfaces through increased attraction of fibronectin PHSRN domain[J]. Adv Healthc Mater, 2022, 11 (10): e2101983.

doi: 10.1002/adhm.202101983
[1] Guangyan YU. Development strategy of stomatology industry [J]. Journal of Peking University (Health Sciences), 2025, 57(5): 817-820.
[2] Yingting YANG, Ruozhu LI, Guili DOU, Yue LEI, Bin XIA. A randomized controlled trial of iRoot BP Plus used as pulp capping agent in the complex fracture of young permanent tooth [J]. Journal of Peking University (Health Sciences), 2024, 56(6): 1083-1088.
[3] Mingxia WANG, Ling DING, Min WANG, Chanjuan ZOU, Siyu YAN, Yingwen LIANG, Weijia WANG, Shanzhi HE. Safe pregnancy and delivery in a female patient with systemic lupus erythematosus after discontinuation of dual-target chimeric antigen receptor T cells therapy [J]. Journal of Peking University (Health Sciences), 2024, 56(6): 1119-1125.
[4] Le-qing CAO,Jing-rui ZHOU,Yu-hong CHEN,Huan CHEN,Wei HAN,Yao CHEN,Yuan-yuan ZHANG,Chen-hua YAN,Yi-fei CHENG,Xiao-dong MO,Hai-xia FU,Ting-ting HAN,Meng LV,Jun KONG,Yu-qian SUN,Yu WANG,Lan-ping XU,Xiao-hui ZHANG,Xiao-jun HUANG. Relationship between treatment and prognosis in patients with late-onset severe pneumonia after allogeneic hematopoietic stem cell transplantation [J]. Journal of Peking University (Health Sciences), 2022, 54(5): 1013-1020.
[5] Lin MA,Jing-yi WU,Shuang-cheng LI,Peng-fei LI,Lu-xia ZHANG. Effect of modification of antihypertensive medications on the association of nitrogen dioxide long-term exposure and chronic kidney disease [J]. Journal of Peking University (Health Sciences), 2022, 54(5): 1047-1055.
[6] Dong YAN,Wen-jie ZHENG. Progress in interferon: A treatment of Behcet syndrome [J]. Journal of Peking University (Health Sciences), 2020, 52(6): 1166-1170.
[7] Qiu-yu LI,Qin CHENG,Zhi-ling ZHAO,Ni-ni DAI,Lin ZENG,Lan ZHU,Wei GUO,Chao LI,Jun-hong WANG,Shu LI,Qing-gang GE,Ning SHEN. Severe acute respiratory syndrome coronavirus 2 infection in renal transplant recipients: A case report [J]. Journal of Peking University (Health Sciences), 2020, 52(4): 780-784.
[8] Jing-yi LI,Sai-nan WANG,Yan-mei DONG. Anti-inflammatory and repaired effects of non-steroidal anti-inflammatory drugs on human dental pulp cells [J]. Journal of Peking University(Health Sciences), 2020, 52(1): 24-29.
[9] FU Zhao-ran,TIAN Fu-cong,ZHANG Lu,HAN Bing,WANG Xiao-yan. Curing mode of universal adhesives affects the bond strength of resin cements to dentin [J]. Journal of Peking University(Health Sciences), 2017, 49(1): 101-104.
[10] ZHANG Lu, YUAN Chong-yang, TIAN Fu-cong, WANG Xiao-yan, GAO Xue-jun. Antibacterial effect of self-etching adhesive systems on Streptococcus mutans [J]. Journal of Peking University(Health Sciences), 2016, 48(1): 57-62.
[11] LIU Xin, DU Yi-qing, LI Yuan-xin, WANG Meng, ZHANG Zhi-li, WANG Xiao-wei, LIU Jun-yi, TIAN Chao. Improved synthesis process of diethyl N-[4-[(2,4-diaminopyrido[3,2-d]pyrimidin-6-yl)methylamino]benzoyl]-L-glutamate [J]. Journal of Peking University(Health Sciences), 2015, 47(5): 842-845.
[12] ZHANG Yi, LIU Yu-hua, ZHOU Yong-sheng, CHUNG Kwok-hung. Influence of carbodiimide-ethanol solution surface treatment on dentin microtensile bond strength [J]. Journal of Peking University(Health Sciences), 2015, 47(5): 825-828.
[13] LIU Da-Jin, FENG Meng-Xian, LIU Min. Primary drug resistance of human immunodeficiency virus (HIV)among the treatment-naive individuals with HIV in China: a meta-analysis [J]. Journal of Peking University(Health Sciences), 2015, 47(3): 474-482.
[14] JIANG Ruo-Dan, LIN Hong, ZHENG Gang, YUAN Shen-Po, DU Qiao, ZHANG Yan. Dentin barrier cytotoxicity test with three-dimensional cell cultures [J]. Journal of Peking University(Health Sciences), 2015, 47(2): 330-335.
[15] LIU Cui-Mei, LIN Hai-Yan, XIN Peng-Ju, DING Jian-Fen, HU Kai, ZHANG Wei. An investigation analysis of prophylactic application of antibiotics in ten types of oral and maxillofacial surgery [J]. Journal of Peking University(Health Sciences), 2015, 47(1): 109-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!