Establishment of high-fat diet-induced obesity and insulin resistance model in rats

  • Xiao-yuan ZHANG ,
  • Cheng-cheng GUO ,
  • Ying-xiang YU ,
  • Lan XIE ,
  • Cui-qing CHANG
Expand
  • Institute of Sports Medicine, Peking University Third Hospital, Beijing 100191, China

Received date: 2018-05-17

  Online published: 2020-06-30

Supported by

National Key Research and Development Program(2016YFD0400603)

Abstract

Objective: To investigate the appropriate conditions and duration for establishing a high-fat diet-induced obesity and insulin resistance model in rats.Methods: Forty-five 6-week-old male Sprague-Dawley (SD) rats were randomly assigned into 2 groups: (1) control group (CON), (2) high-fat diet group (HFD). HFD was fed with a high-fat diet (45% kcal from fat) while CON with chow diet. After four-weeks of high-fat diet feeding, the rats of obesity resistance (OR) were eliminated according to body weight sorting, whereas obese (OB) rats were continued feeding a high-fat diet until 12 weeks. Body weight and food intake were recorded weekly. Glucose tolerance was evaluated by oral glucose tolerance test (OGTT) in 4 weeks, 8 weeks and 12 weeks. At the end of 12 weeks, insulin releasing test and visceral fat mass were measured and HE staining of the liver, adipose tissue and pancreatic tissue were conducted.Results: After 4 weeks of a high-fat diet, the body weight of HFD was 17.8% higher than that of CON (P=0.001), and the rate of obesity was 67.6%-78.4%. Glucose tolerance of OB rats was impaired with a higher blood glucose concentration at 120 min (P<0.001) and a higher area under the curve (AUC, P=0.037) in OGTT compared with CON. The rate of obesity and insulin-resistance rats was 79.3%. After 8 weeks of feeding, the body weight in OB was 30.4% higher than CON (P<0.001). In OGTT, blood glucose levels at 60 min and 120 min were 35.6% and 36.4% higher than those in CON (both P<0.001), and AUC was 21.7% (P<0.001) higher than that of CON. The rate of obesity and insulin-resistance rats was 100.0%. After 12 weeks of feeding, the body weight in OB was 36.9% higher than that in CON (P<0.001). In OGTT, the blood glucose levels at 60 min and 120 min were 24.8% (P=0.001) and 34.6% (P<0.001) higher than those in CON, and AUC was 16.1% (P=0.019) higher than that of CON. The rate of obesity and insulin-resistance rats was 93.3%. The insulin releasing test showed that serum insulin concentration at each time point (0, 30, 60, 120 min) was higher than that in CON, with a 6.3-times higher than that in CON at 120 min (P=0.008). Pathological changes were observed in islets and liver in the OB rats.Conclusion: After 4 weeks of a high-fat diet (45% kcal from fat) feeding in six-weeks SD rats, the rats of OR were eliminated. Impaired glucose tolerance was found in OB rats after 4 weeks of feeding, and the rate was higher after 8-12 weeks of high-fat diet feeding.

Cite this article

Xiao-yuan ZHANG , Cheng-cheng GUO , Ying-xiang YU , Lan XIE , Cui-qing CHANG . Establishment of high-fat diet-induced obesity and insulin resistance model in rats[J]. Journal of Peking University(Health Sciences), 2020 , 52(3) : 557 -563 . DOI: 10.19723/j.issn.1671-167X.2020.03.024

References

[1] Rees DA, Alcolado JC. Animal models of diabetes mellitus[J]. Diabet Med, 2005,22(4):359-370.
[2] Malik VS, Willett WC, Hu FB. Global obesity: trends, risk factors and policy implications[J]. Nat Rev Endocrinol, 2013,9(1):13-27.
[3] Chen D, Wang MW. Development and application of rodent models for type 2 diabetes[J]. Diabetes Obes Metab, 2005,7(4):307-317.
[4] Panchal SK, Brown L. Rodent models for metabolic syndrome research[J]. J Biomed Biotechnol, 2011,2011:351982. doi: 10.1155/2011/351982.
[5] 张小华, 张汝学, 贾正平, 等. 高脂饮食和地塞米松联合诱导胰岛素抵抗大鼠模型[J]. 中国实验动物学报, 2008,16(5):325-329.
[6] Chen SH, Zhuang XH, Liu YT, et al. Expression and significance of lipin1 and AMPKalpha in hepatic insulin resistance in diet-induced insulin resistance rats[J]. Exp Clin Endocrinol Diabetes, 2012,120(2):84-88.
[7] Marques C, Meireles M, Norberto S, et al. High-fat diet-induced obesity rat model: a comparison between Wistar and Sprague-Dawley rat[J]. Adipocyte, 2016,5(1):11-21.
[8] Davidson EP, Coppey LJ, Dake B, et al. Effect of treatment of Sprague-Dawley rats with AVE7688, enalapril, or candoxatril on diet-induced obesity [J]. J Obes, 2011, 2011: pii: 686952. doi: 10.1155/2011/686952.
[9] Reed MJ, Meszaros K, Entes LJ, et al. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat[J]. Metabolism, 2000,49(11):1390-1394.
[10] 王智华, 宋光耀, 刘晶, 等. 高脂饮食诱发胰岛素抵抗大鼠模型的建立与评价[J]. 现代中西医结合杂志, 2012,21(3):244-245.
[11] Svegliati-Baroni G, Candelaresi C, Saccomanno S, et al. A model of insulin resistance and nonalcoholic steatohepatitis in rats: role of peroxisome proliferator-activated receptor-alpha and n-3 polyunsa-turated fatty acid treatment on liver injury[J]. Am J Pathol, 2006,169(3):846-860.
[12] Hariri N, Thibault L. High-fat diet-induced obesity in animal models[J]. Nutr Res Rev, 2010,23(2):270-299.
[13] 那立欣, 赵丹, 宁华, 等. 减肥功能实验动物模型的改良[J]. 卫生研究, 2010,39(2):162-164.
[14] Kleiner DE Brunt EM van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease[J]. Hepatology, 2005,41(6):1313-1321.
[15] Levin BE, Dunn-Meynell AA, Balkan B, et al. Selective breeding for diet-induced obesity and resistance in Sprague-Dawley rats[J]. Am J Physiol, 1997,273(2 Pt 2):R725-R730.
[16] Cheng HS, Ton SH, Phang S, et al. Increased susceptibility of post-weaning rats on high-fat diet to metabolic syndrome[J]. J Adv Res, 2017,8(6):743-752.
[17] Giles ED, Jackman MR, Maclean PS. Modeling diet-induced obesity with obesity-prone rats: Implications for studies in females[J]. Front Nutr, 2016,3(3):50.
[18] Ghibaudi L, Cook J, Farley C, et al. Fat intake affects adiposity, comorbidity factors, and energy metabolism of sprague-dawley rats[J]. Obes Res, 2002,10(9):956-963.
[19] Chalkley SM, Hettiarachchi M, Chisholm DJ, et al. Long-term high-fat feeding leads to severe insulin resistance but not diabetes in Wistar rats[J]. Am J Physiol Endocrinol Metab, 2002,282(6):E1231-E1238.
[20] Malvi P, Piprode V, Chaube B, et al. High fat diet promotes achievement of peak bone mass in young rats[J]. Biochem Biophys Res Commun, 2014,455(1-2):133-138.
[21] Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease[J]. J Clin Invest, 2011,121(6):2111-2117.
[22] Karalis KP, Giannogonas P, Kodela E, et al. Mechanisms of obesity and related pathology: Linking immune responses to metabolic stress[J]. FEBS J, 2009,276(20):5747-5754.
[23] Hotamisligil GS. Inflammatory pathways and insulin action[J]. Int J Obes Relat Metab Disord, 2003,27(Suppl 3):S53-55.
[24] Shapiro H, Lutaty A, Ariel A. Macrophages, meta-inflammation, and immuno-metabolism[J]. Scientific World J, 2011,11(6):2509-2529.
Outlines

/