Effects of three self-etch adhesives and mild salivary contamination on the bonding durability of deciduous teeth

  • Chi-yi LUO ,
  • Chu-fang PENG ,
  • Yuan YANG ,
  • Man QIN ,
  • Yuan-yuan WANG
Expand
  • Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Disease & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China

Received date: 2020-09-21

  Online published: 2021-02-07

Supported by

Chinese Stomatological Association Youth Clinical Research Foundation(CSA-B2018-10)

Abstract

Objective: To compare the bonding durability of three different self-etch adhesives to primary enamel and dentin, and to investigate the effect of mild salivary contamination followed by air drying on the bonding durability.Methods: Two hundred and forty enamel specimens were divided randomly into 16 groups (n=15/group)according to the adhesive system [self-etch adhesives: Clearfil SE Bond(SE), AdperTM Easy One (EO), Scotchbond Universal (SBU); total-etch adhesive: AdperTM Single Bond Plus(SL)], contamination status (non-contaminated vs. salivary-contaminated ) and storage condition (stored in distilled water for 24 h vs. aging mode 5 000 thermal cycles in 5 ℃ and 55 ℃). Two hundred and forty dentin specimens were assigned in the same way. Shear bond strength for 12 specimens in each group were measured. The adhesive interface for the residual specimens in each group was observed by scanning electron microscopy(SEM). Data were analyzed by three-way analysis of variance and Tukey test(P<0.05).Results: For primary enamel, total-etch adhesive showed higher initial shear bond strength values (28.92±1.83) MPa and shear bond strength values (27.27±3.03) MPa after thermal cycles compared with the other groups, and the difference between the groups was statistically significant (P<0.01). Shear bond strength values of EO decreased significantly in salivary-treated groups, regardless of storage conditions, and the difference was statistically significant (P<0.01). For primary dentin, shear bond strength values of EO decreased significantly in salivary-treated groups after 24 h (P<0.01). After 5 000 thermal cycles, total-etch adhesive showed significantly lower shear bond strength values (14.31±1.97) MPa compared with the other groups, and the difference between the groups was statistically significant (P<0.01), and shear bond strength values of EO were significantly lower than those in SE and SBU groups (P<0.01), regardless of contamination status.Conclusion: Total-etch adhesive SL has better bonding durability to primary enamel. SE and SBU have better bonding durability to primary dentin and have a certain resistance to salivary contamination, while the bonding performance of EO is compromised greatly by mild salivary contamination followed by air drying.

Cite this article

Chi-yi LUO , Chu-fang PENG , Yuan YANG , Man QIN , Yuan-yuan WANG . Effects of three self-etch adhesives and mild salivary contamination on the bonding durability of deciduous teeth[J]. Journal of Peking University(Health Sciences), 2021 , 53(1) : 46 -53 . DOI: 10.19723/j.issn.1671-167X.2021.01.008

References

[1] Perdigao J, Sezinando A, Monteiro PC. Laboratory bonding ability of a multi-purpose dentin adhesive[J]. Am J Dent, 2012,25(3):153-158.
[2] Munoz MA, Luque-Martinez IV, Malaquias P, et al. In vitro longe-vity of bonding properties of universal adhesives to dentin[J]. Oper Dent, 2015,40(3):282-292.
[3] Lawson NC, Robles A, Fu CC, et al. Two-year clinical trial of a universal adhesive in total-etch and self-etch mode in non-carious cervical lesions[J]. J Dent, 2015,43(10):1229-1234.
[4] Vermelho PM, Reis AF, Ambrosano GMB, et al. Adhesion of multimode adhesives to enamel and dentin after one year of water storage[J]. Clinical Oral Investigations, 2016,21(5):1707-1715.
[5] Santschi K, Peutzfeldt A, Lussi A, et al. Effect of salivary contamination and decontamination on bond strength of two one-step selfetching adhesives to dentin of primary and permanent teeth[J]. J Adhes Dent, 2015,17(1):51-57.
[6] Soares FZM, Rocha RdO, Raggio DP, et al. Microtensile bond strength of different adhesive systems to primary and permanent dentin[J]. Pediatr Dent, 2005,27(6):457-462.
[7] Ozmen B, Koyuturk AE, Tokay U, et al. Evaluation of bond strength of self-etching adhesives having different pH on primary and permanent teeth dentin[J]. J Appl Biomater Funct Mater, 2015,13(3):e274-e279.
[8] Osorio R, Yamauti M, Ruiz-Requena ME, et al. MMPs activity and bond strength in deciduous dentine-resin bonded interfaces[J]. J Dent, 2013,41(6):549-555.
[9] Soares FZ, Lenzi TL, de Oliveira Rocha R. Degradation of resin-dentine bond of different adhesive systems to primary and permanent dentine[J]. Eur Arch Paediatr Dent, 2017,18(2):113-118.
[10] Yaguchi T. Layering mechanism of MDP-Ca salt produced in demineralization of enamel and dentin apatite[J]. Dent Mater, 2017,33(1):23-32.
[11] Kulkarni AS, Kokate S, hegde V, et al. The effect of saliva con-tamination on shear bond strength of two universal bonding agents: an in vitro study[J]. J Clin Diagn Res, 2018,12(4):6-10.
[12] Cobanoglu N, Unlu N, Ozer F, et al. Bond strength of self-etch adhesives after saliva contamination at different application steps[J]. Oper Dent, 2013,38(5):505-511.
[13] Loguercio AD, Munoz MA, Luque-Martinez I, et al. Does active application of universal adhesives to enamel in self-etch mode improve their performance?[J]. J Dent, 2015,43(9):1060-1070.
[14] Cardenas AFM, Siqueira FSF, Bandeca MC, et al. Impact of pH and application time of meta-phosphoric acid on resin-enamel and resin-dentin bonding[J]. J Mech Behav Biomed Mater, 2018,78:352-361.
[15] Gong HH, Guo XW, Cao DF, et al. Photopolymerizable and moisture-curable polyurethanes for dental adhesive applications to increase restoration durability[J]. J Mater Chem B, 2019,7(5):744-754.
[16] Antoniazzi BF, Nicoloso GF, Lenzi TL, et al. Selective acid etching improves the bond strength of universal adhesive to sound and demineralized enamel of primary teeth[J]. J Adhes Dent, 2016,18(4):311-316.
[17] Memarpour M, Shafiei F, Razmjouei F, et al. Shear bond strength and scanning electron microscopy characteristics of universal adhesive in primary tooth dentin: An in vitro study.[J]. Dent Res J (Isfahan), 2018,15(4):264-270.
[18] Porto IM, Saiani RA, Chan KL, et al. Organic and inorganic content of fluorotic rat incisors measured by FTIR spectros-copy[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2010,77(1):59-63.
[19] Silverstone LM, Saxton CA, Dogon IL, et al. Variation in the pattern of acid etching of human dental enamel examined by scanning electron microscopy[J]. Caries Res, 1975,9(5):373-387.
[20] Sumikawa DA, Marshall GW, Gee L, et al. Microstructure of primary tooth dentin[J]. Pediatr Dent, 1999,21(7):439-444.
[21] Lenzi TL, Guglielmi Cde A, Arana-Chavez VE, et al. Tubule density and diameter in coronal dentin from primary and permanent human teeth[J]. Microsc Microanal, 2013,19(6):1445-1449.
[22] Ye Q, Wang Y, Spencer P. Nanophase separation of polymers exposed to simulated bonding conditions[J]. J Biomed Mater Res Part B Appl Biomater, 2009,88(2):339-348.
[23] Werle SB, Steglich A, Soares FZM, et al. Effect of prolonged air drying on the bond strength of adhesive systems to dentin.[J]. Gen Dent, 2015,63(6):68-72.
[24] Landuyt KLV, Snauwaert J, Munck JD, et al. Origin of interfacial droplets with one-step adhesives[J]. J Dent Res, 2007,86(8):739-744.
[25] Pragasam AX, Duraisamy V, Nayak UA, et al. Evaluation of sealing ability two self-etching adhesive systems and a glass ionomer lining LC under composite restoration in primary tooth: An in vitro study[J]. J Pharm Bioallied Sci, 2015,7(Suppl 2):518-523.
[26] Angker L, Nockolds C, Swain MV, et al. Quantitative analysis of the mineral content of sound and carious primary dentine using BSE imaging[J]. Arch Oral Biol, 2004,49(2):99-107.
[27] van Meerbeek B, de Munck J, Yoshida Y, et al. Buonocore memorial lecture adhesion to enamel and dentin: current status and future challenges[J]. Oper Dent, 2003,28(3):215-235.
Outlines

/