Journal of Peking University(Health Sciences) >
Risk modeling based on HER-2 related genes for bladder cancer survival prognosis assessment
Received date: 2023-03-20
Online published: 2023-10-09
Objective: To investigate the correlation between the human epidermal growth factor receptor-2-related genes (HRGs) and survival prognosis of bladder cancer and to construct a predictive model for survival prognosis of bladder cancer patients based on HRGs. Methods: HRGs in bladder cancer were found by downloading bladder tumor tissue mRNA sequencing data and clinical data from the cancer genome atlas (TCGA), downloading HER-2 related genes from the molecular signatures database (MsigDB), and crossing the two databases. Further identifying HRGs associated with bladder cancer survival (P < 0.05) by using single and multi-factor Cox regression analysis and constructing HRGs risk score model (HRSM), the bladder cancer patients were categorized into high-risk and low-risk groups accor-ding to the median risk score. Survival analysis of the patients in high- and low-risk groups was conducted using R language and correlation of HRGs with clinical characteristics. A multi-factor Cox regression analysis was used to verify the independent factors affecting the prognosis of the patients with bladder cancer. The area under the curve (AUC) of the receiver operating characteristic curve (ROC) of HRSM was calculated, and a nomogram was constructed for survival prediction of the bladder cancer patients. Analysis of HRSM and patient immune cell infiltration correlation was made using the TIMER database. Results: A total of 13 HRGs associated with patient survival were identified in this study. Five genes (BTC, CDC37, EGF, PTPRR and EREG) were selected for HRSM by multi-factor Cox regression analysis. The 5-year survival rate of the bladder cancer patients in the high-risk group was significantly lower than that of the patients in the low-risk group. High expression of PTPRR was found to be significantly and negatively correlated with tumor grade and stage by clinical correlation analysis, while EREG was found to be the opposite; Increased expression of EGF was associated with high grade, however, the high expression ofCDC37showed the opposite result. And no significant correlation was found between BTC expression and clinical features. Correlation analysis of HRSM with immune cells revealed a positive correlation between risk score and infiltration of dendritic cells, CD8+T cells, CD4+T cells, neutrophils and macrophages. Conclusion: HRGs have an important role in the prognosis of bladder cancer patients and may serve as new predictive biomarkers and potential targets for treatment.
Key words: Bladder cancer; HER-2 related genes; Risk model; Prognosis; Immune cell infiltration
Huan-rui LIU , Xiang PENG , Sen-lin LI , Xin GOU . Risk modeling based on HER-2 related genes for bladder cancer survival prognosis assessment[J]. Journal of Peking University(Health Sciences), 2023 , 55(5) : 793 -801 . DOI: 10.19723/j.issn.1671-167X.2023.05.004
| 1 | AneoniS , FerlayJ , SoerjomatarmI ,et al.Bladder cancer incidence and mortality: A global overview and recent trends[J].Eur Urol,2017,71(1):96-108. |
| 2 | NielsenME , SmithAB , MererAM ,et al.Trends in stage-specific incidence rates for urothelial carcinoma of the bladder in the Uni-ted States: 1988 to 2006[J].Cancer,2014,120(1):86-95. |
| 3 | CrispenPL , KusmartsevS .Mechanisms of immune evasion in bladder cancer[J].Cancer Immunol Immunother,2020,69(1):3-14. |
| 4 | Goossens-LaanCA , LeliveldAM , VerhoevenRH ,et al.Effects of age and comorbidity on treatment and survival of patients with muscle-invasive bladder cancer[J].Int J Cancer,2014,135(4):905-912. |
| 5 | Redondo-GonzalezE , de CastroLN , Moreno-SierraJ ,et al.Bladder carcinoma data with clinical risk factors and molecular mar-kers: A cluster analysis[J].Biomed Res Int,2015,2015,168682. |
| 6 | MoasserMM .The oncogene HER2 : Its signaling and transforming functions and its role in human cancer pathogenesis[J].Oncogene,2007,26(45):6469-6487. |
| 7 | BegnamiMD , FukudaE , FregnaniJH ,et al.Prognostic implications of altered human epidermal growth factor receptors (HERs) in gastric carcinomas: HER2 and HER3 are predictors of poor outcome[J].J Clin Oncol,2011,29(22):3030-3036. |
| 8 | BangYJ , van CutsemE , FeyereislovaA ,et al.Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial[J].Lancet,2010,376(9742):687-697. |
| 9 | WolffAC , HammondME , HicksDG ,et al.Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Patho-logists clinical practice guideline update[J].J Clin Oncol,2013,31(31):3997-4013. |
| 10 | IyerG , Al-AhmadieH , SchultzN ,et al.Prevalence and co-occurrence of actionable genomic alterations in high-grade bladder cancer[J].J Clin Oncol,2013,31(25):3133-3140. |
| 11 | BaiX , HeW , YinH ,et al.Prognostic significance of HER2 status evaluation using immunohistochemistry in patients with urothelial carcinoma of the bladder: A retrospective single-center experience[J].Exp Ther Med,2022,24(5):704. |
| 12 | LoiS , SirtaineN , PietteF ,et al.Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase Ⅲ randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98[J].J Clin Oncol,2013,31(7):860-867. |
| 13 | StantonSE , AdamsS , DisisML .Variation in the incidence and magnitude of tumor-infiltrating lymphocytes in breast cancer subtypes: A systematic review[J].JAMA Oncol,2016,2(10):1354-1360. |
| 14 | JiaY , KodumudiKN , RamamoorthiG ,et al.Th1 cytokine interferon gamma improves response in HER2 breast cancer by modulating the ubiquitin proteasomal pathway[J].Mol Ther,2021,29(4):1541-1556. |
| 15 | WülfingC , MachielsJP , RichelDJ ,et al.A single-arm, multicenter, open-label phase 2 study of lapatinib as the second-line treatment of patients with locally advanced or metastatic transitional cell carcinoma[J].Cancer,2009,115(13):2881-2890. |
| 16 | ShengX , YanX , WangL ,et al.Open-label, multicenter, phase Ⅱ study of RC48-ADC, a HER2-targeting antibody-drug conjugate, in patients with locally advanced or metastatic urothelial carcinoma[J].Clin Cancer Res,2021,27(1):43-51. |
| 17 | ShengX , ZhouAP , YaoX ,et al.A phase Ⅱ study of RC48-ADC in HER2-positive patients with locally advanced or metastatic urothelial carcinoma[J].J Clin Oncol,2019,37(Suppl 15):4509. |
| 18 | RushJS , PetersonJL , CeresaBP .Betacellulin (BTC) biases the EGFR to dimerize with ErbB3[J].Mol Pharmacol,2018,94(6):1382-1390. |
| 19 | ShenT , YangT , YaoM ,et al.BTC as a novel biomarker contri-buting to EMT via the PI3K-AKT pathway in OSCC[J].Front Genet,2022,13,875617. |
| 20 | DahlhoffM , WolfE , SchneiderMR .The ABC of BTC: Structural properties and biological roles of betacellulin[J].Semin Cell Dev Biol,2014,28,42-48. |
| 21 | OlsenDA , KjaerIM , BrandslundI .Development of a three-plex single molecule immunoassay enabling measurement of the EGFR ligands amphiregulin, betacellulin and transforming growth factor alpha simultaneously in human serum samples[J].J Immunol Methods,2018,459,63-69. |
| 22 | LeeYS , SongGJ , JunHS .Betacellulin-induced alpha-cell proli-feration is mediated by ErbB3 and ErbB4, and may contribute to beta-cell regeneration[J].Front Cell Dev Biol,2020,8,605110. |
| 23 | OlsenDA , BechmannT , ?stergaardB ,et al.Increased concentrations of growth factors and activation of the EGFR system in breast cancer[J].Clin Chem Lab Med,2012,50(10):1809-1818. |
| 24 | PearlLH .Hsp90 and Cdc37: A chaperone cancer conspiracy[J].Curr Opin Genet Dev,2005,15(1):55-61. |
| 25 | SerwetnykMA , BlaggBSJ .The disruption of protein-protein interactions with co-chaperones and client substrates as a strategy towards Hsp90 inhibition[J].Acta Pharm Sin B,2021,11(6):1446-1468. |
| 26 | GrayPJ , Jr. , PrinceT , ChengJ ,et al.Targeting the oncogene and kinome chaperone CDC37[J].Nat Rev Cancer,2008,8(7):491-495. |
| 27 | GhatakS , MisraS , TooleBP .Hyaluronan constitutively regulates ErbB2 phosphorylation and signaling complex formation in carcinoma cells[J].J Biol Chem,2005,280(10):8875-8883. |
| 28 | HuangW , YeM , ZhangLR ,et al.FW-04-806 inhibits proliferation and induces apoptosis in human breast cancer cells by binding to N-terminus of Hsp90 and disrupting Hsp90-Cdc37 complex formation[J].Mol Cancer,2014,13,150. |
| 29 | Esparís-OgandoA , MonteroJC , ArribasJ ,et al.Targeting the EGF/HER ligand-receptor system in cancer[J].Curr Pharm Des,2016,22(39):5887-5898. |
| 30 | WangZ .ErbB receptors and cancer[J].Methods Mol Biol,2017,1652,3-35. |
| 31 | GarousiS , Jahanbakhsh-GodehkahrizS , EsfahaniK ,et al.Meta-analysis of EGF-stimulated normal and cancer cell lines to discover EGF-associated oncogenic signaling pathways and prognostic biomarkers[J].Iran J Biotechnol,2022,20(3):e3245. |
| 32 | LaczmanskaI , SasiadekMM .Tyrosine phosphatases as a superfamily of tumor suppressors in colorectal cancer[J].Acta Biochim Pol,2011,58(4):467-470. |
| 33 | MenigattiM , CattaneoE , Sabates-BellverJ ,et al.The protein tyrosine phosphatase receptor type R gene is an early and frequent target of silencing in human colorectal tumorigenesis[J].Mol Cancer,2009,8,124. |
| 34 | WangY , CaoJ , LiuW ,et al.Protein tyrosine phosphatase receptor type R (PTPRR) antagonizes the wnt signaling pathway in ovarian cancer by dephosphorylating and inactivating β-catenin[J].J Biol Chem,2019,294(48):18306-18323. |
| 35 | SuPH , LinYW , HuangRL ,et al.Epigenetic silencing of PTPRR activates MAPK signaling, promotes metastasis and serves as a biomarker of invasive cervical cancer[J].Oncogene,2013,32(1):15-26. |
| 36 | MunkleyJ , LaffertyNP , KalnaG ,et al.Androgen-regulation of the protein tyrosine phosphatase PTPRR activates ERK1/2 signalling in prostate cancer cells[J].BMC Cancer,2015,15,9. |
| 37 | ChengWL , FengPH , LeeKY ,et al.The role of EREG/EGFR pathway in tumor progression[J].Int J Mol Sci,2021,22(23):12828. |
| 38 | ZhangL , NanF , YangL ,et al.Differentially expressed EREG and SPP1 are independent prognostic markers in cervical squamous cell carcinoma[J].J Obstet Gynaecol Res,2022,48(7):1848-1858. |
| 39 | LiuS , WangY , HanY ,et al.EREG-driven oncogenesis of head and neck squamous cell carcinoma exhibits higher sensitivity to erlotinib therapy[J].Theranostics,2020,10(23):10589-10605. |
| 40 | XiaQ , ZhouY , YongH ,et al.Elevated epiregulin expression predicts poor prognosis in gastric cancer[J].Pathol Res Pract,2019,215(5):873-879. |
/
| 〈 |
|
〉 |