• 教悌 黄 ,
  • 菁 胡 ,
  • 博 韩
Expand

Received date: 2024-03-28

  Online published: 2024-07-23

Cite this article

教悌 黄 , 菁 胡 , 博 韩 . [J]. Journal of Peking University(Health Sciences), 2024 , 56(4) : 557 -561 . DOI: 10.19723/j.issn.1671-167X.2024.04.001

References

1 Hu J , Sun F , Chen W , et al. BTF3 sustains cancer stem-like phenotype of prostate cancer via stabilization of BMI1[J]. J Exp Clin Cancer Res, 2019, 38 (1): 227.
2 Harris WP , Mostaghel EA , Nelson PS , et al. Androgen deprivation therapy: Progress in understanding mechanisms of resistance and optimizing androgen depletion[J]. Nat Clin Pract Urol, 2009, 6 (2): 76- 85.
3 Helpap B , Kollermann J , Oehler U . Neuroendocrine differentiation in prostatic carcinomas: Histogenesis, biology, clinical relevance, and future therapeutical perspectives[J]. Urol Int, 1999, 62 (3): 133- 138.
4 Vlachostergios PJ , Puca L , Beltran H . Emerging variants of castration-resistant prostate cancer[J]. Curr Oncol Rep, 2017, 19 (5): 32.
5 Aggarwal R , Huang J , Alumkal JJ , et al. Clinical and genomic characterization of treatment-emergent small-cell neuroendocrine prostate cancer: A multi-institutional prospective study[J]. J Clin Oncol, 2018, 36 (24): 2492- 2503.
6 陈铌, 周桥. 第5版WHO前列腺肿瘤分类解读[J]. 中华病理学杂志, 2023, 52 (4): 321- 328.
7 Lee JK , Phillips JW , Smith BA , et al. N-Myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells[J]. Cancer Cell, 2016, 29 (4): 536- 547.
8 Han M , Li F , Zhang Y , et al. FOXA2 drives lineage plasticity and KIT pathway activation in neuroendocrine prostate cancer[J]. Cancer Cell, 2022, 40 (11): 1306- 1323.e8.
9 Wang Z , Wang T , Hong D , et al. Single-cell transcriptional regulation and genetic evolution of neuroendocrine prostate cancer[J]. iScience, 2022, 25 (7): 104576.
10 Hu J , Han B , Huang J . Morphologic spectrum of neuroendocrine tumors of the prostate: An updated review[J]. Arch Pathol Lab Med, 2020, 144 (3): 320- 325.
11 Ali A , Du Feu A , Oliveira P , et al. Prostate zones and cancer: Lost in transition?[J]. Nat Rev Urol, 2022, 19 (2): 101- 115.
12 Soares VA , Trezza E . Electrocardiographic changes observed during the use of trimethaphan in the treatment of malignant arterial hypertension[J]. Arq Bras Cardiol, 1978, 31 (4): 273- 276.
13 Ousset M , van Keymeulen A , Bouvencourt G , et al. Multipotent and unipotent progenitors contribute to prostate postnatal development[J]. Nat Cell Biol, 2012, 14 (11): 1131- 1138.
14 Choi N , Zhang B , Zhang L , et al. Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation[J]. Cancer Cell, 2012, 21 (2): 253- 265.
15 Stoyanova T , Cooper AR , Drake JM , et al. Prostate cancer originating in basal cells progresses to adenocarcinoma propagated by luminal-like cells[J]. Proc Natl Acad Sci USA, 2013, 110 (50): 20111- 20116.
16 Park JW , Lee JK , Sheu KM , et al. Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage[J]. Science, 2018, 362 (6410): 91- 95.
17 Ku SY , Rosario S , Wang Y , et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance[J]. Science, 2017, 355 (6320): 78- 83.
18 Deng S , Wang C , Wang Y , et al. Ectopic JAK-STAT activation enables the transition to a stem-like and multilineage state conferring AR-targeted therapy resistance[J]. Nat Cancer, 2022, 3 (9): 1071- 1087.
19 Giafaglione JM , Crowell PD , Delcourt AML , et al. Prostate lineage-specific metabolism governs luminal differentiation and response to antiandrogen treatment[J]. Nat Cell Biol, 2023, 25 (12): 1821- 1832.
20 Bakht MK , Beltran H . Metabolically regulated lineages in prostate cancer[J]. Nat Cell Biol, 2023, 25 (12): 1726- 1728.
21 Butler W , Xu L , Zhou Y , et al. Oncofetal protein glypican-3 is a biomarker and critical regulator of function for neuroendocrine cells in prostate cancer[J]. J Pathol, 2023, 260 (1): 43- 55.
22 Kaushik AK , Shojaie A , Panzitt K , et al. Inhibition of the hexosamine biosynthetic pathway promotes castration-resistant prostate cancer[J]. Nat Commun, 2016, 7, 11612.
23 Graham LS , Haffner MC , Sayar E , et al. Clinical, pathologic, and molecular features of amphicrine prostate cancer[J]. Prostate, 2023, 83 (7): 641- 648.
24 Labrecque MP , Coleman IM , Brown LG , et al. Molecular profiling stratifies diverse phenotypes of treatment-refractory metastatic castration-resistant prostate cancer[J]. J Clin Invest, 2019, 129 (10): 4492- 4505.
25 Labrecque MP , Brown LG , Coleman IM , et al. RNA splicing factors SRRM3 and SRRM4 distinguish molecular phenotypes of castration-resistant neuroendocrine prostate cancer[J]. Cancer Res, 2021, 81 (18): 4736- 4750.
26 Wilkinson S , Ye H , Karzai F , et al. Nascent prostate cancer heterogeneity drives evolution and resistance to intense hormonal therapy[J]. Eur Urol, 2021, 80 (6): 746- 757.
27 Cheng Q , Butler W , Zhou Y , et al. Pre-existing castration-resistant prostate cancer-like cells in primary prostate cancer promote resistance to hormonal therapy[J]. Eur Urol, 2022, 81 (5): 446- 455.
28 Marklund M , Schultz N , Friedrich S , et al. Spatio-temporal analysis of prostate tumors in situ suggests pre-existence of treatment-resistant clones[J]. Nat Commun, 2022, 13 (1): 5475.
29 Dong B , Miao J , Wang Y , et al. Single-cell analysis supports a luminal-neuroendocrine transdifferentiation in human prostate cancer[J]. Commun Biol, 2020, 3 (1): 778.
30 Deeble PD , Murphy DJ , Parsons SJ , et al. Interleukin-6- and cyclic AMP-mediated signaling potentiates neuroendocrine differentiation of LNCaP prostate tumor cells[J]. Mol Cell Biol, 2001, 21 (24): 8471- 8482.
31 Wang C , Peng G , Huang H , et al. Blocking the feedback loop between neuroendocrine differentiation and macrophages improves the therapeutic effects of enzalutamide (MDV3100) on prostate cancer[J]. Clin Cancer Res, 2018, 24 (3): 708- 723.
32 Natani S , Sruthi KK , Asha SM , et al. Activation of TGF-beta: SMAD2 signaling by IL-6 drives neuroendocrine differentiation of prostate cancer through p38MAPK[J]. Cell Signal, 2022, 91, 110240.
33 Huang J , Yao JL , Zhang L , et al. Differential expression of interleukin-8 and its receptors in the neuroendocrine and non-neuroendocrine compartments of prostate cancer[J]. Am J Pathol, 2005, 166 (6): 1807- 1815.
34 Li Y , He Y , Butler W , et al. Targeting cellular heterogeneity with CXCR2 blockade for the treatment of therapy-resistant prostate cancer[J]. Sci Transl Med, 2019, 11 (521): eaax0428.
35 Lim J S , Ibaseta A , Fischer MM , et al. Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer[J]. Nature, 2017, 545 (7654): 360- 364.
36 Beltran H , Oromendia C , Danila DC , et al. A phase Ⅱ trial of the aurora kinase a inhibitor alisertib for patients with castration-resistant and neuroendocrine prostate cancer: Efficacy and biomarkers[J]. Clin Cancer Res, 2019, 25 (1): 43- 51.
37 Michaelson MD , Oudard S , Ou YC , et al. Randomized, placebo-controlled, phase Ⅲ trial of sunitinib plus prednisone versus prednisone alone in progressive, metastatic, castration-resistant prostate cancer[J]. J Clin Oncol, 2014, 32 (2): 76- 82.
38 Shimizu Y , Suzuki T , Yoshikawa T , et al. Next-generation cancer immunotherapy targeting glypican-3[J]. Front Oncol, 2019, 9, 248.
39 Paz-Ares L , Champiat S , Lai WV , et al. Tarlatamab, a first-in-class DLL3-targeted bispecific T-cell engager, in recurrent small-cell lung cancer: An open-label, phase Ⅰ study[J]. J Clin Oncol, 2023, 41 (16): 2893- 2903.
40 Yang W , Wang W , Li Z , et al. Delta-like ligand 3 in small cell lung cancer: Potential mechanism and treatment progress[J]. Crit Rev Oncol Hematol, 2023, 191, 104136.
41 Giffin MJ , Cooke K , Lobenhofer EK , et al. AMG 757, a half-life extended, DLL3-targeted bispecific T-cell engager, shows high potency and sensitivity in preclinical models of small-cell lung cancer[J]. Clin Cancer Res, 2021, 27 (5): 1526- 1537.
42 Chou J , Egusa EA , Wang S , et al. Immunotherapeutic targeting and PET imaging of DLL3 in small-cell neuroendocrine prostate cancer[J]. Cancer Res, 2023, 83 (2): 301- 315.
43 Gay CM , Stewart CA , Park EM , et al. Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities[J]. Cancer Cell, 2021, 39 (3): 346- 360.e7.
Outlines

/