Biological characteristics and translational research of dental stem cells

  • Qianmin OU ,
  • Zhengshi LI ,
  • Luhan NIU ,
  • Qianhui REN ,
  • Xinyu LIU ,
  • Xueli MAO ,
  • Songtao SHI , *
Expand
  • South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yatsen University & Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
SHI Songtao, e-mail,

Received date: 2025-07-16

  Online published: 2025-08-27

Supported by

the National Key Research and Development Program of China(2021YFA1100600)

the Pearl River Talent Recruitment Program(2019ZT08Y485)

the Pearl River Talent Recruitment Program(2019JC01Y182)

Copyright

All rights reserved. Unauthorized reproduction is prohibited.

Abstract

Dental stem cells (DSCs), a distinct subset of mesenchymal stem cells (MSCs), are isolated from dental tissues, such as dental pulp, exfoliated deciduous teeth, periodontal ligament, and apical papilla. They have emerged as a promising source of stem cell therapy for tissue regeneration and autoimmune disorders. The main types of DSCs include dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSCs), and stem cells from apical papilla (SCAP). Each type exhibits distinct advantages: easy access via minimally invasive procedures, multi-lineage differentiation potential, and excellent ethical acceptability. DSCs have demonstrated outstanding clinical efficacy in oral and maxillofacial regeneration, and their long-term safety has been verified. In oral tissue regeneration, DSCs are highly effective in oral tissue regeneration for critical applications such as the restoration of dental pulp vitality and periodontal tissue repair. A defining advantage of DSCs lies in their ability to integrate with host tissues and promote physiological regeneration, which render them a better option for oral tissue regenerative therapies. Beyond oral applications, DSCs also exhibit promising potential in the treatment of systemic diseases, including type Ⅱ diabetes and autoimmune diseases due to their immunomodulatory effects. Moreover, extracellular vesicles (EVs) derived from DSCs act as critical mediators for DSCs' paracrine functions. Possessing regulatory properties similar to their parental cells, EVs are extensively utilized in research targeting tissue repair, immunomodulation, and regenerative therapy—offering a "cell-free" strategy to mitigate the limitations associated with cell-based therapies. Despite these advancements, standardizing large-scale manufacturing, maintaining strict quality control, and clarifying the molecular mechanisms underlying the interaction of DSCs and their EVs with recipient tissues remain major obstacles to the clinical translation of these treatments into broad clinical use. Addressing these barriers will be critical to enhancing their clinical applicability and therapeutic efficacy. In conclusion, DSCs and their EVs represent a transformative approach in regenerative medicine, and increasing clinical evidence supports their application in oral and systemic diseases. Continuous innovation remains essential to unlocking the widespread clinical potential of DSCs.

Cite this article

Qianmin OU , Zhengshi LI , Luhan NIU , Qianhui REN , Xinyu LIU , Xueli MAO , Songtao SHI . Biological characteristics and translational research of dental stem cells[J]. Journal of Peking University(Health Sciences), 2025 , 57(5) : 827 -835 . DOI: 10.19723/j.issn.1671-167X.2025.05.003

间充质干细胞(mesenchymal stem/stromal cells,MSCs)作为一类重要的成体干细胞,广泛分布于人体各器官中,在治疗自身免疫性疾病与维持组织稳态方面扮演着不可或缺的角色[1]。自20世纪干细胞概念首次提出以来,随着研究的深入,MSCs凭借其优异的再生潜能和免疫调控能力,目前已成为组织工程再生与自身免疫性疾病治疗的核心要素[2]。然而,骨髓和脂肪组织等来源的MSCs的获取过程通常需要侵入性方法,这导致MSCs的应用面临来源缺乏和伦理争议等问题[3]
口腔干细胞(dental stem cells,DSCs)凭借其独特的生物学优势备受关注。DSCs定位于口腔颌面部间充质组织,具有易于获取、分离简便等特点。目前,本团队已成功分离并鉴定出多种牙源性DSCs,包括牙髓干细胞(dental pulp stem cells, DPSCs)[4]、乳牙干细胞(stem cells from human exfoliated deciduous teeth, SHED)[5]、牙周膜干细胞(periodontal ligament stem cells, PDLSCs)[6]、根尖乳头干细胞(stem cells from the apical papilla, SCAP)[7]和牙龈干细胞(gingiva-derived mesenchymal stem cells, GMSCs)等[8]。DSCs已在组织再生、神经退行性疾病、自身免疫性疾病及糖尿病等多个领域的临床前研究与临床试验中显示出广阔的应用前景。本文旨在系统性总结DSCs及其衍生囊泡的功能特性与临床应用潜力,并展望未来发展,以期为创新治疗策略和临床实践提供新的方向。

1 DSCs的发现及其生物学性能

2000年,本团队首次从成人恒牙中分离鉴定了DPSCs,DPSCs是首个被发现的DSCs[4]。DPSCs具备多谱系分化潜能和克隆形成能力等干细胞的重要特性,这一发现为口腔科学研究开辟了全新方向。与骨髓来源的间充质干细胞(bone marrow-derived MSCs, BMSCs)相比,DPSCs能表达相似的间充质标志物(如VCAM-1、CD146、α-SMA)及骨相关标志物(如ALP、OPN、BSP)[9]。由于成人恒磨牙组织与骨髓组织源的微环境存在显著差异,DPSCs表现出更强的体外增殖能力[4]。此外,DPSCs可定向分化为成牙本质细胞,其体内移植实验证实能有效诱导形成异位牙本质-牙髓复合体[10]。2003年,本团队进一步从乳牙牙髓中分离鉴定了SHED[6]。SHED高表达间充质标志物(如STRO-1、CD146)和胚胎干细胞标志物(如NANOG、OCT-4)以及肿瘤识别抗原(如TRA-160、TRA-1-81)[11]。相较于DPSCs,SHED展现出更高的体外增殖速率、更强的克隆形成能力及成骨分化潜能,在成骨分化过程中产生更高水平的碱性磷酸酶和骨钙素[6, 12]。因此,SHED的发现不仅为牙髓组织再生提供了新型细胞资源,其强大的跨谱系分化能力更拓展了其在组织工程治疗中的应用。
2004年,本团队首次从牙周韧带组织中成功分离鉴定出一种新型成体干细胞——PDLSCs[5]。PDLSCs与DPSCs类似,表达STRO-1和CD146等间充质标志物,并展现出与DPSCs相似的体外增殖能力[13]。此外,PDLSCs具有独特的成牙骨质细胞样分化能力,高表达肌腱相关转录因子scleraxis,并能形成与牙骨质样组织连接的胶原纤维(类似Sharpey纤维)。在裸鼠体内移植实验中,PDLSCs可形成牙骨质/牙周韧带样结构,证实其具备再生牙周附着和治疗牙周病的潜力[5]。PDLSCs独特的生物学特性提示不同组织衍生的微环境对间充质干细胞发育潜能具有显著影响。
2008年,本团队与王松灵团队从人未成熟恒牙的根尖乳头中鉴定出另一种新型DSCs——SCAP[7, 14]。SCAP表现出与DPSCs相当的成骨/成牙本质分化能力,共表达多种骨/牙本质标志物和间充质标志物STRO-1[7],同时高表达多种神经标志物(如Nestin、NeuN、GFAP),其表达谱与DPSCs和SHED相似[14]。然而,SCAP与DPSCs存在功能差异:SCAP在器官培养中的增殖速率高于DPSCs的2~3倍,但其表达较低水平的DSP、TGFβRII、Flt-1、Flg和CD146。这些差异可能源于SCAP所在的根尖乳头组织(相比牙髓)血管和细胞成分较少,且行使类似初级成牙本质细胞的功能,而非牙髓来源细胞的修复性牙本质功能[15]。2009年,本团队从人牙龈组织中分离并鉴定了GMSCs。GMSCs与BMSCs相比具有更高的增殖率,表达OCT-4、SSEA-4、hTERT和STRO-1,能在体外稳定扩增至第六代以上,并维持其早期表型特征[16]
综上,DSCs表现出与BMSCs相似的干细胞特性,包括体外增殖为具有成纤维细胞样形态的贴壁细胞、克隆形成能力、多向分化潜能(可向中胚层如脂肪细胞和骨细胞、内胚层和神经外胚层分化),并表达间充质标志物/干细胞特异性基因。然而,从发育起源看,DSCs主要源于外胚层间充质组织神经嵴细胞,谱系示踪证实与神经有关的胶质细胞是休眠的神经嵴衍生细胞,而DSCs起源于周围神经相关胶质,这与中胚层起源的经典MSCs存在显著差异[16]。这种独特的发育背景赋予了DSCs独特的生物学特性:空间上主要定位于口颌面部组织血管周围,表达神经胶质蛋白、α-SMA等神经血管相关标志物,并且展现出突出的成血管和成神经分化潜能。大量临床前研究证实,局部移植外源性DSCs能有效促进口腔颅颌面组织工程构建与再生修复,显著改善骨/软骨愈合,并推动牙髓及牙周组织的修复进程。

2 DSCs的功能特性

DSCs在口腔颅颌面系统中来源丰富,由于其特殊的发育起源,相较于经典MSCs,DSCs展现出更强的增殖和分化能力,尤其在成血管和成神经方面具有优越性[17]。同时,SHED作为DSCs的重要亚型,因其具有易于采集以及可规避伦理限制等优势,成为口腔颅颌面系统组织工程乃至全身疾病治疗的理想干细胞来源[18]。DSCs在骨组织再生与修复方面潜力显著,尤其在口腔颌面部应用广泛。除骨再生外,DSCs还被推荐用于软组织重建,例如牙髓、牙周膜和神经组织修复[2, 19]。SHED和DPSCs均表现出强大的神经和血管生成能力,是牙髓再生的理想候选细胞。在小型猪实验中,SHED细胞聚集体技术的应用成功再生了具有成牙本质细胞衬里的功能性牙髓组织[20]。类似地,DPSCs聚集体植入人根管后6周即形成具有血管的牙髓样组织[21]。随着DPSCs相关研究的深入,其再生牙髓的生物学基础和功能机制逐渐明晰:从DPSCs小鼠体内异位移植形成牙髓样组织[22],到构建血管化三维结构的牙髓样组织[23],再到再植形成含神经血管的牙髓样组织[24],以及一系列大动物实验中获得DSCs实现牙髓再生的证据,这些基础和临床前研究显著推动了该领域的发展。2018年金岩团队与本团队合作报道临床上利用自体SHED聚集体成功诱导牙髓组织再生[25]。通过多普勒和电活力测试,证实再生牙髓具有神经血管活性。放射学和组织学检查发现,再生牙髓形成三维结构完整的牙髓组织,并能继续促进牙根发育,这是组织再生领域里程碑式成果。此外,PDLSCs移植到免疫功能受损的小鼠体内后可再生功能性牙骨质/牙周膜样结构[5]。CD24a+ SCAP也被报道可再生具有功能性牙本质和神经血管样结构的牙根[26]。DSCs在口腔颅颌面系统中展现出优异的修复与促组织再生能力。同时,同种异体DSCs移植在神经[27]、角膜[28]、心血管、肝[29-30]、肌肉退行性疾病[31]和神经系统疾病[32-34]中也具有治疗潜力。
DSCs的免疫调节特性使其成为治疗免疫异常和炎症性疾病的理想选择。DSCs主要通过分泌免疫调节细胞因子发挥免疫抑制作用,调控先天性免疫、适应性免疫和补体系统,这有助于维持组织稳态,避免过度炎症反应。在组织受损时,DSCs可通过免疫调节活性快速响应,防止损伤恶化。具体而言,DPSCs在体外诱导活化T细胞凋亡,减轻结肠炎小鼠的炎症组织损伤,该效应与其Fas配体的表达相关[35]。同时,DPSCs还可通过释放TGF-β来抑制急性同种异体免疫应答,抑制B淋巴细胞活化产生IgM和IgG[36]。源自炎症牙髓的DPSCs可通过TNF-α/IDO轴抑制巨噬细胞功能,这揭示了牙髓内免疫调节与自修复能力的内在机理[37]。类似地,全身输注GMSCs可显著改善结肠炎症,修复受损的黏膜组织,逆转腹泻和体重减轻,缓解结肠炎小鼠的疾病症状,该治疗机制涉及诱导巨噬细胞M2极化,上调CD206表达,增加抗炎细胞因子IL-10分泌并增强其吞噬活性[8]。DSCs对炎症的调节作用与其他组织来源的MSCs相似,例如,GMSCs特异性抑制外周血淋巴细胞增殖并诱导IDO、iNOS和COX-2等免疫抑制因子表达[16]。在小型猪牙周炎模型中,王松灵团队的研究证实PDLSCs体内移植形成外形似正常牙根的硬组织,具有牙骨质/牙周膜样结构,成功再生修复了牙周炎缺损[38]。因此,DSCs的抗炎功能适用于治疗多种炎症性疾病,包括系统性红斑狼疮[39]、关节炎[40]、结肠炎[8, 35]及雌激素缺乏性骨质疏松症[41]等。

3 DSCs的临床应用

DSCs凭借其优越的生物学特性和良好的组织相容性,已在口腔颅颌面及多种组织的再生修复与疾病治疗中展现出广阔的应用前景。近年来,随着口腔干细胞基础研究的深入和组织工程技术的发展,DSCs在颅颌面及全身系统性疾病中的应用取得显著进展,并已开展一系列临床研究,为DSCs的临床转化应用奠定了基础。

3.1 牙体和牙髓组织

牙体硬组织和牙髓软组织是牙的主要组成部分,也是牙体疾病治疗的基础。牙体硬组织现在主要通过非生物材料进行充填或修复治疗,除了牙本质可通过刺激牙本质细胞进行再生变厚以外,其他牙体硬组织目前仍缺乏自主再生的可靠方法[42]。有学者通过Malassez上皮细胞与口腔干细胞混合胶原海绵支架,在体外生成了类牙釉质和牙本质的组织,但尚未成功在体内进行牙釉质的再生修复[43]。由于牙本质再生过程依赖于牙髓中未分化的间充质细胞增殖并分化为成牙本质细胞,因此,维持牙髓活力成为牙本质再生的重要策略[44]
牙髓是一种富含纤维、血管和神经的疏松结缔组织,被高度矿化的牙本质包裹,对维持牙稳态和组织再生修复起重要作用。目前,根管治疗仍是牙髓炎症或坏死的临床标准治疗方法。DPSCs、SHED和SCAP因与牙髓发育密切联系,因此成为牙髓再生研究的种子细胞[45]。2013年,我国在国际上首次开展牙髓再生的临床随机研究。2017年日本一项临床研究也报道,使用自体DPSCs实现了恒牙牙本质形成和完整牙髓再生[46]。后续一系列病例报道进一步证实了DSCs在单根与多根牙牙髓再生中的可能性[47]。目前临床研究的随访结果发现不良反应罕见发生,初步证实自体DSCs在牙髓再生治疗中的安全性与有效性。2023年,我国卫生健康委员会通过了“评估异体人牙髓MSCs聚合体介导的牙髓再生安全性和有效性”的临床研究备案,显著推动了我国DSCs在口腔颅颌再生领域的发展。基于此,DSCs介导的牙髓组织再生治疗有望成为临床标准化治疗方案。

3.2 牙周组织

牙周组织由牙龈、牙槽骨、牙周膜和牙骨质等构成,对维持牙齿稳固及口颌咀嚼功能起重要作用[48]。牙周组织的损伤与缺损常伴随复杂的炎症环境,因此亟需开发有效的牙周组织修复再生策略以提升对牙周病的治疗作用[49]。大动物牙周缺损模型的研究结果显示,同种异体、同种自体和异种人源性DSCs均能促进猪牙周炎模型的牙周组织修复再生[50-53]。上述结果提示,DSCs的异体排斥效应较小,可能通过发挥免疫调节功能调控牙周组织稳态以促进牙周组织再生修复。近年来发展的细胞聚集类技术,如细胞膜片和细胞聚集复合物等,因其具有更强的生物活性和协同作用,在牙周骨组织的再生中展现出优越的潜能,为再生医学提供重要启示[50, 53-55]
目前,临床主要通过使用生物材料或相关活性因子进行填充或刺激牙周组织再生[56-57]。DSCs因其优越的再生能力和免疫调节能力,近年来在牙周组织的修复与再生方面已开展一系列临床试验。研究表明,人自体PDLSCs聚集体能够获得稳定的牙槽骨高度增量,并证实了自体PDLSCs在牙周缺损治疗中的安全性[5, 58]。研究人员利用脱细胞牙基质与人SHED聚集体在15例患者中实现了良好的牙周膜再生,与对照组相比,生物工程牙种植组在牙松动度、探诊深度等临床牙周参数上均显示出统计学差异[59]。2015年,王松灵团队将人异体DPSCs应用于临床试验并注册临床药物开发,使用人异体DPSCs输注治疗慢性牙周炎并促进局部牙周组织再生,评估DPSCs注射治疗在牙周疾病中的安全性,并开发人异体DPSCs注射剂治疗慢性牙周炎。该研究已进入Ⅱ期临床试验阶段,前期结果显示DPSCs注射剂可改善慢性牙周炎,并促进牙槽骨再生。2020年我国启动首个DSCs临床研究,发起项目“异体DSCs治疗牙周骨缺损的安全性与有效性评价”已通过国家卫生健康委员会备案,其干细胞产品也已通过中国食品药品检定研究院质量检验(P2、P5、P10三批次DSCs产品批号分别为H202200617、SH202110409、SH202110410)。一系列临床研究显示,DSCs在牙周组织的修复再生中表现出优越潜能,有望对牙周疾病治疗领域带来重大突破。

3.3 口腔颌面部其他组织

口腔颌面部因创伤、肿瘤切除或感染等因素常导致软硬组织缺损,影响患者的基本生理功能与面部美观,严重时还可能造成心理障碍,降低生活质量[60]。尽管传统的自体骨移植、游离皮瓣移植在修复上取得了一定效果,但难以实现与原生组织结构和功能完全匹配[61]。近年来,DSCs在该领域展现出重要的再生修复潜力。在硬组织再生方面,研究显示,颌骨骨髓MSCs在成骨潜能上优于长骨骨髓MSCs,且具有更快的增殖能力和更稳定的骨整合效果[62]。部分临床研究已证实其治疗效果,例如自体第三磨牙DPSCs与胶原海绵构建的复合物在患者中实现了下颌骨缺损的完全修复,体现了DSCs在骨再生中的可行性与安全性[63]。在颞下颌关节紊乱病(temporomandibular joint disorders, TMD)的研究中,已有共识支持采用自体软骨细胞或组织工程材料治疗其退行性病变[64-66]。动物实验证实,DSCs,如DPSCs、GMSCs,在促进关节软骨不规则缺损区域修复方面具有良好效果[67-70]。研究者进一步基于MSCs凋亡囊泡的功能传承性[71-72],开展使用人自体外周血来源凋亡囊泡治疗TMD相关骨关节炎。该项目正处于实施阶段,旨在验证其在调节炎症和促进软骨修复方面的安全性与有效性。
在舌组织的再生研究中,DSCs因具备良好的成肌肉分化潜能,被用于舌缺损的功能重建[73-75]。在动物实验中,DSCs联合细胞外基质移植可显著防止舌部纤维化与挛缩,促进肌肉再生与伤口愈合[75]。此外,GMSCs被证实可诱导舌乳头和味蕾再生,为舌组织形态与功能的同步恢复提供了新思路[16, 76]。在面神经修复方面,目前临床通常采用电刺激等物理手段或局部神经移植恢复神经功能[77-78]。DSCs因来源于外胚层神经嵴,具备良好的神经亲和性[79-81]。尽管尚无临床试验开展,但相关动物面神经再生实验已证实,DPSCs能够改善面神经的神经感觉评分,且DSCs联合神经支架材料应用,可有效促进体内面神经的血管化再生,增加神经纤维数量与髓鞘厚度,恢复部分感觉功能[81-84]。综上,DSCs及其治疗策略在口腔颌面部软硬组织再生中展现出良好前景,部分治疗路径已进入临床验证阶段,为多类组织缺损的精准修复提供了潜在的细胞基础和技术方案。

3.4 系统性疾病

除在口腔颅颌面系统中的组织修复优势外,DSCs在多种系统性疾病治疗中也显示出广阔前景,其强大的免疫调节能力是实现跨系统治疗的重要基础。研究表明,DSCs可通过Fas配体介导的细胞接触诱导T细胞凋亡,抑制炎症反应[85];DPSCs亦可调控免疫调节细胞因子的分泌,从而参与炎症疾病治疗[37]。目前,DSCs已在神经、心血管、肝、肌肉等系统性退行性疾病中展现出良好的组织保护与功能改善作用[86-88]。在临床方面,2021年,上海长海医院开展了异体SHED系统性输注治疗2型糖尿病的临床试验,结果显示患者糖基化血清蛋白与糖化血红蛋白水平显著下降,葡萄糖代谢及胰岛功能均得到改善[89]。2022年,日本一项Ⅰ/Ⅱ期临床试验也尝试评估DPSCs在治疗急性缺血性脑卒中的安全性与疗效,尽管最终数据尚未公开,但其研究设计本身已表明DPSCs作为系统性干预手段的临床价值[90]。综上,DSCs不仅在口腔组织再生领域具有巨大潜能,也有望成为治疗多种全身免疫性、代谢性和退行性疾病的重要细胞来源。

4 DSCs的衍生细胞外囊泡

4.1 干细胞衍生细胞外囊泡

干细胞衍生的细胞外囊泡(extracellular vesicles, EVs)是干细胞行使旁分泌功能的重要介质,具有类似母细胞的调控能力,近年来被广泛应用于组织修复、免疫调节与再生治疗研究中。EVs是细胞在特定生理状态下主动分泌的磷脂双分子层囊泡结构,可在细胞间递送蛋白质、脂质、mRNA、miRNA及转录因子等分子,从而介导靶细胞的功能改变[91-92]。根据其生物发生途径和粒径大小,EVs通常可分为外泌体、微泡及凋亡囊泡(apoptotic vesicles, apoVs)三类[93-94]
外泌体主要源自内体途径,在多泡体中形成后与细胞膜融合释放,富含CD9、CD63、CD81、TSG101等典型标志物;微泡则由细胞膜外翻出芽形成,包含Annexin A1等膜结合蛋白;而apoVs是细胞凋亡过程中产生的一类特异性EVs,可进一步分为凋亡外泌体(apoptotic exosomes, apoExos, 直径30~150 nm)、凋亡微泡(apoptotic microvesicles, apoMVs, 直径0.1~1 μm)及凋亡小体(apoptotic bodies, apoBDs, 直径1~5 μm),其形成机制涉及半胱天冬酶激活、膜皱缩、膜突起以及PANX1通道的激活等过程[95-97]
干细胞来源的EVs不仅保留母细胞的生物活性成分,如CD29、CD44、CD90等干细胞标志物,还具有低免疫原性、良好生物相容性、易于保存及工程化修饰等优势[72, 98]。其中,MSCs来源的EVs在调节免疫炎症、促进血管生成、刺激成骨成牙分化等方面展现出显著疗效[99-101]。研究发现,MSCs来源的apoVs在急性肝损伤、骨质疏松、皮肤创伤和免疫相关疾病模型中均表现出良好治疗效果,并因其富含磷脂酰丝氨酸、C1q、整合素α5等凋亡相关分子而呈现出独特的生物学特性[72, 102-103]
随着分离纯化技术的发展,MSCs来源的EVs的亚型区分逐渐清晰,不同类型EVs在功能特性与治疗机制上存在显著差异。外泌体主要介导靶细胞基因表达调控与信号通路激活;而apoVs则因其富含核酸、气体信号分子、甚至完整细胞器等成分,表现出更强的生物功能调控能力,正成为“无细胞治疗”领域的新兴焦点。

4.2 DSCs来源EVs的功能特性与应用

DSCs来源的EVs保留母细胞的多种生物学特性,可通过携带miRNA、mRNA、蛋白质等活性成分,发挥细胞间信息传递功能,在组织修复、免疫调节和炎症控制等方面展现出广阔的应用前景。不同来源的DSCs衍生EVs在内容物组成与功能特性上存在差异。
SHED-EVs被报道可促进成骨分化、抑制炎症反应,并在糖尿病相关骨代谢紊乱中发挥保护作用,例如,miR-100-5p富集于SHED-EVs,可通过靶向调节mTOR通路,显著提升BMSCs的成骨分化能力[104],在糖尿病小鼠模型中,SHED-EVs通过调节Smad1/5/9磷酸化,改善BMSCs的成骨功能并促进骨形成[105]。此外,SHED-EVs可促进巨噬细胞向M2型极化,有助于调节炎症微环境[106]。DPSCs-EVs在促进血管生成、神经保护和牙髓组织再生方面具有显著潜力。在牙髓再生方面,DPSCs衍生外泌体被用于构建生物材料复合体系,以增强其促血管化和成牙本质细胞分化的能力,从而提升牙髓组织再生效果。
PDLSCs-EVs在调节免疫炎症和修复牙周组织中表现出显著作用,其携带的miR-155-5p、miR-146a等分子可通过调节Treg/Th17平衡,抑制炎症反应并促进骨再生[107]。此外,在骨-韧带界面重建及牙周膜再生过程中,PDLSCs-EVs还可调控细胞迁移、成骨相关基因表达和胶原纤维整合的能力[108]。SCAP-EVs在根尖发育和牙本质形成方面具有潜力。研究表明,SCAP-EVs可促进牙本质基质蛋白表达,调节牙本质生成过程中成牙本质细胞的分化,可能在牙根发育障碍等疾病的干预中发挥作用[109-110]。目前关于DSCs来源的apoVs的研究仍较为有限,但已有研究提示其具备独特的免疫调节和组织再生功能。在系统性红斑狼疮、骨质疏松及软组织损伤等模型中,apoVs表现出特有的膜标志物和细胞核、线粒体等完整成分,可能具有不同于常规EVs的更复杂生物学功能[72, 111-112]

5 总结与展望

DSCs凭借其来源广泛性、采集便利性和规避伦理争议的优势,已成为组织修复再生与自身免疫性疾病治疗的理想干细胞资源。然而,DSCs的临床转化仍面临一些挑战:(1)实现高质量细胞规模化生产是临床应用的基础,亟需开发创新生产工艺提升细胞产能,解决细胞资源短缺与价格昂贵问题;(2)建立标准化质量评价体系是安全性的保障,通过构建动态化“质量指纹”评价模型,能有效评估DSCs质量;(3)明确干细胞治疗机制是疾病治疗的关键,后续需探索DSCs与机体在物质-功能相互作用、代谢-机能调控层面的动态协调机制,从而阐明DSCs在健康与疾病中的作用。因此,协同解决干细胞规模化生产瓶颈、质量标准化评价缺口、干细胞治疗机制认知局限等问题,将全面提高DSCs在临床转化中的应用,最终迈向个体化干细胞治疗的新时代。

获奖项目  2013年牙髓生物学优秀科学家奖(国际牙科研究协会)和2020年口腔生物医学杰出贡献奖(中华口腔医学会)

利益冲突  所有作者均声明不存在利益冲突。

作者贡献声明  欧乾民、李政诗:文章撰写与修改;牛露菡、任倩慧、刘欣雨、毛学理:文献查阅以及文章撰写方面的协助;施松涛:文章策划与修改。

1
Han Y , Yang J , Fang J , et al. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases[J]. Signal Transduct Target Ther, 2022, 7 (1): 92.

DOI

2
Ma L , Chen C , Liu D , et al. Apoptotic extracellular vesicles are metabolized regulators nurturing the skin and hair[J]. Bioact Mater, 2023, 19, 626- 641.

3
Costela-Ruiz VJ , Melguizo-Rodríguez L , Bellotti C , et al. Different sources of mesenchymal stem cells for tissue regeneration: A guide to identifying the most favorable one in orthopedics and dentistry applications[J]. Int J Mol Sci, 2022, 23 (11): 6356.

DOI

4
Gronthos S , Mankani M , Brahim J , et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo[J]. Proc Natl Acad Sci USA, 2000, 97 (25): 13625- 13630.

DOI

5
Seo BM , Miura M , Gronthos S , et al. Investigation of multipotent postnatal stem cells from human periodontal ligament[J]. Lancet, 2004, 364 (9429): 149- 155.

DOI

6
Miura M , Gronthos S , Zhao M , et al. SHED: stem cells from human exfoliated deciduous teeth[J]. Proc Natl Acad Sci USA, 2003, 100 (10): 5807- 5812.

DOI

7
Sonoyama W , Liu Y , Fang D , et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine[J]. PLoS One, 2006, 1 (1): e79.

DOI

8
Xu X , Chen C , Akiyama K , et al. Gingivae contain neural-crest and mesoderm-derived mesenchymal stem cells[J]. J Dent Res, 2013, 92 (9): 825- 832.

DOI

9
Shi S , Gronthos S . Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp[J]. J Bone Miner Res, 2003, 18 (4): 696- 704.

DOI

10
Batouli S , Miura M , Brahim J , et al. Comparison of stem-cell-mediated osteogenesis and dentinogenesis[J]. J Dent Res, 2003, 82 (12): 976- 981.

DOI

11
Kerkis I , Kerkis A , Dozortsev D , et al. Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers[J]. Cells Tissues Organs, 2006, 184 (3/4): 105- 116.

12
Seo BM , Sonoyama W , Yamaza T , et al. SHED repair critical-size calvarial defects in mice[J]. Oral Dis, 2008, 14 (5): 428- 434.

DOI

13
Xu J , Wang W , Kapila Y , et al. Multiple differentiation capacity of STRO-1+/CD146+ PDL mesenchymal progenitor cells[J]. Stem Cells Dev, 2009, 18 (3): 487- 496.

DOI

14
Sonoyama W , Liu Y , Yamaza T , et al. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: A pilot study[J]. J Endod, 2008, 34 (2): 166- 171.

DOI

15
Huang GT , Sonoyama W , Liu Y , et al. The hidden treasure in apical papilla: The potential role in pulp/dentin regeneration and bioroot engi-neering[J]. J Endod, 2008, 34 (6): 645- 651.

DOI

16
Zhang Q , Shi S , Liu Y , et al. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis[J]. J Immunol, 2009, 183 (12): 7787- 7798.

DOI

17
Huang GT , Gronthos S , Shi S . Mesenchymal stem cells derived from dental tissues vs. those from other sources: Their biology and role in regenerative medicine[J]. J Dent Res, 2009, 88 (9): 792- 806.

DOI

18
Cordeiro MM , Dong Z , Kaneko T , et al. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth[J]. J Endod, 2008, 34 (8): 962- 969.

DOI

19
Sui B , Chen C , Kou X , et al. Pulp stem cell-mediated functional pulp regeneration[J]. J Dent Res, 2019, 98 (1): 27- 35.

DOI

20
Guo H , Zhao W , Liu A , et al. SHED promote angiogenesis in stem cell-mediated dental pulp regeneration[J]. Biochem Biophys Res Commun, 2020, 529 (4): 1158- 1164.

DOI

21
Itoh Y , Sasaki JI , Hashimoto M , et al. Pulp regeneration by 3-dimensional dental pulp stem cell constructs[J]. J Dent Res, 2018, 97 (10): 1137- 1143.

DOI

22
Gronthos S , Brahim J , Li W , et al. Stem cell properties of human dental pulp stem cells[J]. J Dent Res, 2002, 81 (8): 531- 535.

DOI

23
Demarco FF , Casagrande L , Zhang Z , et al. Effects of morphogen and scaffold porogen on the differentiation of dental pulp stem cells[J]. J Endod, 2010, 36 (11): 1805- 1811.

DOI

24
Huang GT , Yamaza T , Shea LD , et al. Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model[J]. Tissue Eng Part A, 2010, 16 (2): 605- 615.

DOI

25
Xuan K , Li B , Guo H , et al. Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth[J]. Sci Transl Med, 2018, 10 (455): eaaf3227.

DOI

26
Liang J , Zhao YJ , Li JQ , et al. A pilot study on biological characteristics of human CD24+ stem cells from the apical papilla[J]. J Dent Sci, 2022, 17 (1): 264- 275.

DOI

27
Zhang X , Zhou Y , Li H , et al. Intravenous administration of DPSCs and BDNF improves neurological performance in rats with focal cerebral ischemia[J]. Int J Mol Med, 2018, 41 (6): 3185- 3194.

28
Gomes JAP , Geraldes Monteiro B , Melo GB , et al. Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells[J]. Invest Ophthalmol Vis Sci, 2010, 51 (3): 1408- 1414.

DOI

29
Yamaza T , Alatas FS , Yuniartha R , et al. In vivo hepatogenic capacity and therapeutic potential of stem cells from human exfoliated deciduous teeth in liver fibrosis in mice[J]. Stem Cell Res Ther, 2015, 6 (1): 171.

DOI

30
Hirata M , Ishigami M , Matsushita Y , et al. Multifaceted therapeutic benefits of factors derived from dental pulp stem cells for mouse liver fibrosis[J]. Stem Cells Transl Med, 2016, 5 (10): 1416- 1424.

DOI

31
Ulusoy C , Zibandeh N , Yıldırım S , et al. Dental follicle mesenchymal stem cell administration ameliorates muscle weakness in MuSK-immunized mice[J]. J Neuroinflammation, 2015, 12, 231.

DOI

32
Mead B , Logan A , Berry M , et al. Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury[J]. Invest Ophthalmol Vis Sci, 2013, 54 (12): 7544- 7556.

DOI

33
Trubiani O , Giacoppo S , Ballerini P , et al. Alternative source of stem cells derived from human periodontal ligament: A new treatment for experimental autoimmune encephalomyelitis[J]. Stem Cell Res Ther, 2016, 7, 1.

DOI

34
Marei MK , El Backly RM . Dental mesenchymal stem cell-based translational regenerative dentistry: From artificial to biological replacement[J]. Front Bioeng Biotechnol, 2018, 6, 49.

DOI

35
Zhao Y , Wang L , Jin Y , et al. Fas ligand regulates the immunomodulatory properties of dental pulp stem cells[J]. J Dent Res, 2012, 91 (10): 948- 954.

DOI

36
Kwack KH , Lee JM , Park SH , et al. Human dental pulp stem cells suppress alloantigen-induced immunity by stimulating T cells to release transforming growth factor beta[J]. J Endod, 2017, 43 (1): 100- 108.

DOI

37
Lee S , Zhang QZ , Karabucak B , et al. DPSCs from inflamed pulp modulate macrophage function via the TNF-α/IDO axis[J]. J Dent Res, 2016, 95 (11): 1274- 1281.

DOI

38
Liu Y , Zheng Y , Ding G , et al. Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine[J]. Stem Cells, 2008, 26 (4): 1065- 1073.

DOI

39
Tang X , Li W , Wen X , et al. Transplantation of dental tissue-derived mesenchymal stem cells ameliorates nephritis in lupus mice[J]. Ann Transl Med, 2019, 7 (7): 132.

DOI

40
Chen M , Su W , Lin X , et al. Adoptive transfer of human gingiva-derived mesenchymal stem cells ameliorates collagen-induced arthritis via suppression of Th1 and Th17 cells and enhancement of regulatory T cell differentiation[J]. Arthritis Rheum, 2013, 65 (5): 1181- 1193.

DOI

41
Liu Y , Wang L , Liu S , et al. Transplantation of SHED prevents bone loss in the early phase of ovariectomy-induced osteoporosis[J]. J Dent Res, 2014, 93 (11): 1124- 1132.

DOI

42
Wei X , Yang M , Yue L , et al. Expert consensus on regenerative endodontic procedures[J]. Int J Oral Sci, 2022, 14 (1): 55.

DOI

43
Shinmura Y , Tsuchiya S , Hata KI , et al. Quiescent epithelial cell rests of Malassez can differentiate into ameloblast-like cells[J]. J Cell Physiol, 2008, 217 (3): 728- 738.

DOI

44
Goldberg M , Njeh A , Uzunoglu E . Is pulp inflammation a pre-requisite for pulp healing and regeneration?[J]. Mediators Inflamm, 2015, 2015, 347649.

DOI

45
Sui B , Wu D , Xiang L , et al. Dental pulp stem cells: From discovery to clinical application[J]. J Endod, 2020, 46 (Suppl 9): S46- S55.

46
Nakashima M , Iohara K , Murakami M , et al. Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: A pilot clinical study[J]. Stem Cell Res Ther, 2017, 8 (1): 61.

DOI

47
Nakashima M , Fukuyama F , Iohara K . Pulp regenerative cell therapy for mature molars: A report of 2 cases[J]. J Endod, 2022, 48 (10): 1334- 1340. e1.

DOI

48
Lang NP , Bartold PM . Periodontal health[J]. J Periodontol, 2018, 89 (Suppl 1): S9- S16.

49
Deng Y , Liang Y , Liu X . Biomaterials for periodontal regeneration[J]. Dent Clin North Am, 2022, 66 (4): 659- 672.

DOI

50
Guo S , Kang J , Ji B , et al. Periodontal-derived mesenchymal cell sheets promote periodontal regeneration in inflammatory microenvironment[J]. Tissue Eng Part A, 2017, 23 (13/14): 585- 596.

51
Venkataiah VS , Handa K , Njuguna MM , et al. Periodontal regeneration by allogeneic transplantation of adipose tissue derived multi-lineage progenitor stem cells in vivo[J]. Sci Rep, 2019, 9 (1): 921.

DOI

52
Fu X , Jin L , Ma P , et al. Allogeneic stem cells from deciduous teeth in treatment for periodontitis in miniature swine[J]. J Periodontol, 2014, 85 (6): 845- 851.

DOI

53
Hu J , Cao Y , Xie Y , et al. Periodontal regeneration in swine after cell injection and cell sheet transplantation of human dental pulp stem cells following good manufacturing practice[J]. Stem Cell Res Ther, 2016, 7 (1): 130.

DOI

54
Takewaki M , Kajiya M , Takeda K , et al. MSC/ECM cellular complexes induce periodontal tissue regeneration[J]. J Dent Res, 2017, 96 (9): 984- 991.

DOI

55
Sui BD , Zheng CX , Zhao WM , et al. Mesenchymal condensation in tooth development and regeneration: A focus on translational aspects of organogenesis[J]. Physiol Rev, 2023, 103 (3): 1899- 1964.

DOI

56
Stavropoulos A , Karring T . Five-year results of guided tissue regeneration in combination with deproteinized bovine bone (Bio-Oss) in the treatment of intrabony periodontal defects: A case series report[J]. Clin Oral Investig, 2005, 9 (4): 271- 277.

DOI

57
Stavropoulos A , Windisch P , Gera I , et al. A phase Ⅱa ran-domized controlled clinical and histological pilot study evaluating rhGDF-5/β-TCP for periodontal regeneration[J]. J Clin Periodontol, 2011, 38 (11): 1044- 1054.

DOI

58
Chen FM , Gao LN , Tian BM , et al. Treatment of periodontal intrabony defects using autologous periodontal ligament stem cells: A randomized clinical trial[J]. Stem Cell Res Ther, 2016, 7, 33.

DOI

59
Guo H , Li B , Wu M , et al. Odontogenesis-related developmental microenvironment facilitates deciduous dental pulp stem cell aggregates to revitalize an avulsed tooth[J]. Biomaterials, 2021, 279, 121223.

DOI

60
O'Connor RC , Shakib K , Brennan PA . Recent advances in the management of oral and maxillofacial trauma[J]. Br J Oral Maxillofac Surg, 2015, 53 (10): 913- 921.

DOI

61
Vincent AG , Gunter AE , Ducic Y , et al. Maxillofacial bony considerations in facial transplantation[J]. Facial Plast Surg, 2021, 37 (6): 735- 740.

DOI

62
Chai Y , Jiang X , Ito Y , et al. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis[J]. Development, 2000, 127 (8): 1671- 1679.

DOI

63
D'Aquino R , De Rosa A , Lanza V , et al. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge bio complexes[J]. Eur Cell Mater, 2009, 18, 75- 83.

DOI

64
de Souza Tesch R , Takamori ER , Menezes K , et al. Temporomandibular joint regeneration: Proposal of a novel treatment for condylar resorption after orthognathic surgery using transplantation of autologous nasal septum chondrocytes, and the first human case report[J]. Stem Cell Res Ther, 2018, 9 (1): 94.

DOI

65
Undt G , Jahl M , Pohl S , et al. Matrix-associated chondrocyte transplantation for reconstruction of articulating surfaces in the temporomandibular joint: A pilot study covering medium- and long-term outcomes of 6 patients[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2018, 126 (2): 117- 128.

DOI

66
De Riu G , Vaira LA , Carta E , et al. Bone marrow nucleated cell concentrate autograft in temporomandibular joint degenerative disorders: 1-year results of a randomized clinical trial[J]. J Craniomaxillofac Surg, 2019, 47 (11): 1728- 1738.

DOI

67
Yang Y , Huang C , Zheng H , et al. Superwettable and injectable GelMA-MSC microspheres promote cartilage repair in temporomandibular joints[J]. Front Bioeng Biotechnol, 2022, 10, 1026911.

DOI

68
Gomez M , Wittig O , Diaz-Solano D , et al. Mesenchymal stromal cell transplantation induces regeneration of large and full-thickness cartilage defect of the temporomandibular joint[J]. Cartilage, 2021, 13 (Suppl 1): S1814- S1821.

69
Ogasawara N , Kano F , Hashimoto N , et al. Factors secreted from dental pulp stem cells show multifaceted benefits for treating experimental temporomandibular joint osteoarthritis[J]. Osteoarthritis Cartilage, 2020, 28 (6): 831- 841.

DOI

70
Zaki AA , Zaghloul M , Helal ME , et al. Impact of autologous bone marrow-derived stem cells on degenerative changes of articulating surfaces associated with the arthritic temporomandibular joint: An experimental study in rabbits[J]. J Oral Maxillofac Surg, 2017, 75 (12): 2529- 2539.

DOI

71
Ou Q , Qiao X , Li Z , et al. Apoptosis releases hydrogen sulfide to inhibit Th17 cell differentiation[J]. Cell Metab, 2024, 36 (1): 78- 89. e5.

DOI

72
Liu D , Kou X , Chen C , et al. Circulating apoptotic bodies maintain mesenchymal stem cell homeostasis and ameliorate osteopenia via transferring multiple cellular factors[J]. Cell Res, 2018, 28 (9): 918- 933.

DOI

73
Kinoshita N , Sasaki Y , Marukawa E , et al. Crosslinked nanogel-based porous hydrogel as a functional scaffold for tongue muscle regeneration[J]. J Biomater Sci Polym Ed, 2020, 31 (10): 1254- 1271.

DOI

74
Bunaprasert T , Hadlock T , Marler J , et al. Tissue engineered muscle implantation for tongue reconstruction: A preliminary report[J]. Laryngoscope, 2003, 113 (10): 1792- 1797.

DOI

75
Xu Q , Shanti RM , Zhang Q , et al. A gingiva-derived mesenchymal stem cell-laden porcine small intestinal submucosa extracellular matrix construct promotes myomucosal regeneration of the tongue[J]. Tissue Eng Part A, 2017, 23 (7/8): 301- 312.

76
Zhang Y , Shi S , Xu Q , et al. SIS-ECM laden with GMSC-derived exosomes promote taste bud regeneration[J]. J Dent Res, 2019, 98 (2): 225- 233.

DOI

77
Deng Y , Xu Y , Liu H , et al. Electrical stimulation promotes regeneration and re-myelination of axons of injured facial nerve in rats[J]. Neurol Res, 2018, 40 (3): 231- 238.

DOI

78
Ali SA , Rosko AJ , Hanks JE , et al. Effect of motor versus sensory nerve autografts on regeneration and functional outcomes of rat facial nerve reconstruction[J]. Sci Rep, 2019, 9 (1): 8353.

DOI

79
Achilleos A , Trainor PA . Neural crest stem cells: Discovery, properties and potential for therapy[J]. Cell Res, 2012, 22 (2): 288- 304.

DOI

80
Zhu Y , Zhang P , Gu RL , et al. Origin and clinical applications of neural crest-derived dental stem cells[J]. Chin J Dent Res, 2018, 21 (2): 89- 100.

81
Kaukua N , Shahidi MK , Konstantinidou C , et al. Glial origin of mesenchymal stem cells in a tooth model system[J]. Nature, 2014, 513 (7519): 551- 554.

DOI

82
Ansari S , Diniz IM , Chen C , et al. Human periodontal liga-ment- and gingiva-derived mesenchymal stem cells promote nerve regeneration when encapsulated in alginate/hyaluronic acid 3D scaffold[J]. Adv Healthc Mater, 2017, 6 (24): 201700670.

83
Mu X , Liu H , Yang S , et al. Chitosan tubes inoculated with dental pulp stem cells and stem cell factor enhance facial nerve-vascularized regeneration in rabbits[J]. ACS Omega, 2022, 7 (22): 18509- 18520.

DOI

84
Zhang Q , Nguyen PD , Shi S , et al. 3D bio-printed scaffold-free nerve constructs with human gingiva-derived mesenchymal stem cells promote rat facial nerve regeneration[J]. Sci Rep, 2018, 8 (1): 6634.

DOI

85
Yang R , Yu T , Liu D , et al. Hydrogen sulfide promotes immunomodulation of gingiva-derived mesenchymal stem cells via the Fas/FasL coupling pathway[J]. Stem Cell Res Ther, 2018, 9 (1): 62.

DOI

86
Chalisserry EP , Nam SY , Park SH , et al. Therapeutic potential of dental stem cells[J]. J Tissue Eng, 2017, 8, 2041731417702531.

DOI

87
Campanella V . Dental Stem Cells: Current research and future applications[J]. Eur J Paediatr Dent, 2018, 19 (4): 257.

88
Zhao L , Li Y , Kou X , et al. Stem cells from human exfoliated deciduous teeth ameliorate autistic-like behaviors of SHANK3 mutant beagle dogs[J]. Stem Cells Transl Med, 2022, 11 (7): 778- 789.

DOI

89
Li W , Jiao X , Song J , et al. Therapeutic potential of stem cells from human exfoliated deciduous teeth infusion into patients with type 2 diabetes depends on basal lipid levels and islet function[J]. Stem Cells Transl Med, 2021, 10 (7): 956- 967.

DOI

90
Suda S , Nito C , Ihara M , et al. Randomised placebo-controlled multicentre trial to evaluate the efficacy and safety of JTR-161, allogeneic human dental pulp stem cells, in patients with Acute Ischaemic stRoke (J-REPAIR)[J]. BMJ Open, 2022, 12 (5): e054269.

DOI

91
Bonsergent E , Grisard E , Buchrieser J , et al. Quantitative characterization of extracellular vesicle uptake and content delivery within mammalian cells[J]. Nat Commun, 2021, 12 (1): 1864.

DOI

92
Jeppesen DK , Fenix AM , Franklin JL , et al. Reassessment of exosome composition[J]. Cell, 2019, 177 (2): 428- 445. e18.

DOI

93
Catalano M , O'Driscoll L . Inhibiting extracellular vesicles formation and release: A review of EV inhibitors[J]. J Extracell Vesicles, 2020, 9 (1): 1703244.

DOI

94
Cheng L , Hill AF . Therapeutically harnessing extracellular vesicles[J]. Nat Rev Drug Discov, 2022, 21 (5): 379- 399.

DOI

95
Park SJ , Kim JM , Kim J , et al. Molecular mechanisms of biogenesis of apoptotic exosome-like vesicles and their roles as damage-associated molecular patterns[J]. Proc Natl Acad Sci USA, 2018, 115 (50): E11721- E11730.

96
Phan TK , Fonseka P , Tixeira R , et al. Pannexin-1 channel regulates nuclear content packaging into apoptotic bodies and their size[J]. Proteomics, 2021, 21 (13/14): e2000097.

97
Poon IKH , Chiu YH , Armstrong AJ , et al. Unexpected link between an antibiotic, pannexin channels and apoptosis[J]. Nature, 2014, 507 (7492): 329- 334.

DOI

98
Dou G , Tian R , Liu X , et al. Chimeric apoptotic bodies functionalized with natural membrane and modular delivery system for inflammation modulation[J]. Sci Adv, 2020, 6 (30): eaba2987.

DOI

99
Zhao B , Chen Q , Zhao L , et al. Periodontal ligament stem cell-derived small extracellular vesicles embedded in matrigel enhance bone repair through the adenosine receptor signaling pathway[J]. Int J Nanomedicine, 2022, 17, 519- 536.

DOI

100
Huang CY , Vesvoranan O , Yin X , et al. Anti-inflammatory effects of conditioned medium of periodontal ligament-derived stem cells on chondrocytes, synoviocytes, and meniscus cells[J]. Stem Cells Dev, 2021, 30 (10): 537- 547.

DOI

101
Zhang Z , Shuai Y , Zhou F , et al. PDLSCs regulate angiogenesis of periodontal ligaments via VEGF transferred by exosomes in periodontitis[J]. Int J Med Sci, 2020, 17 (5): 558- 567.

DOI

102
Fu Y , Sui B , Xiang L , et al. Emerging understanding of apoptosis in mediating mesenchymal stem cell therapy[J]. Cell Death Dis, 2021, 12 (6): 596.

DOI

103
Kugeratski FG , Hodge K , Lilla S , et al. Quantitative proteomics identifies the core proteome of exosomes with syntenin-1 as the highest abundant protein and a putative universal biomarker[J]. Nat Cell Biol, 2021, 23 (6): 631- 641.

DOI

104
Luo P , Jiang C , Ji P , et al. Exosomes of stem cells from human exfoliated deciduous teeth as an anti-inflammatory agent in temporomandibular joint chondrocytes via miR-100-5p/mTOR[J]. Stem Cell Res Ther, 2019, 10 (1): 216.

DOI

105
Wang M , Li J , Ye Y , et al. SHED-derived conditioned exosomes enhance the osteogenic differentiation of PDLSCs via Wnt and BMP signaling in vitro[J]. Differentiation, 2020, 111, 1- 11.

DOI

106
Li Y , Yang YY , Ren JL , et al. Exosomes secreted by stem cells from human exfoliated deciduous teeth contribute to functional recovery after traumatic brain injury by shifting microglia M1/M2 polarization in rats[J]. Stem Cell Res Ther, 2017, 8 (1): 198.

DOI

107
Zheng Y , Dong C , Yang J , et al. Exosomal microRNA-155-5p from PDLSCs regulated Th17/Treg balance by targeting sirtuin-1 in chronic periodontitis[J]. J Cell Physiol, 2019, 234 (11): 20662- 20674.

DOI

108
Lan Q , Xiao X , Bi X , et al. Effects of periodontal ligament stem cell-derived exosomes on osteoblastic proliferation, migration, differentiation, apoptosis, and signaling pathways[J]. Oral Dis, 2024, 30 (2): 710- 718.

DOI

109
Yu S , Chen X , Liu Y , et al. Exosomes derived from stem cells from the apical papilla alleviate inflammation in rat pulpitis by upregulating regulatory T cells[J]. Int Endod J, 2022, 55 (5): 517- 530.

DOI

110
Wang A , Liu J , Zhuang X , et al. Identification and comparison of PiRNA expression profiles of exosomes derived from human stem cells from the apical papilla and bone marrow mesenchymal stem cells[J]. Stem Cells Dev, 2020, 29 (8): 511- 520.

DOI

111
Kou X , Xu X , Chen C , et al. The Fas/Fap-1/Cav-1 complex regulates IL-1RA secretion in mesenchymal stem cells to accelerate wound healing[J]. Sci Transl Med, 2018, 10 (432): eaai8524.

DOI

112
Wang R , Hao M , Kou X , et al. Apoptotic vesicles ameliorate lupus and arthritis via phosphatidylserine-mediated modulation of T cell receptor signaling[J]. Bioact Mater, 2023, 25, 472- 484.

Outlines

/