Journal of Peking University (Health Sciences) ›› 2025, Vol. 57 ›› Issue (5): 827-835. doi: 10.19723/j.issn.1671-167X.2025.05.003

Previous Articles     Next Articles

Biological characteristics and translational research of dental stem cells

Qianmin OU, Zhengshi LI, Luhan NIU, Qianhui REN, Xinyu LIU, Xueli MAO, Songtao SHI*()   

  1. South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yatsen University & Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2025-07-16 Online:2025-10-18 Published:2025-08-27
  • Contact: Songtao SHI
  • Supported by:
    the National Key Research and Development Program of China(2021YFA1100600); the Pearl River Talent Recruitment Program(2019ZT08Y485); the Pearl River Talent Recruitment Program(2019JC01Y182)

RICH HTML

  

Abstract: Dental stem cells (DSCs), a distinct subset of mesenchymal stem cells (MSCs), are isolated from dental tissues, such as dental pulp, exfoliated deciduous teeth, periodontal ligament, and apical papilla. They have emerged as a promising source of stem cell therapy for tissue regeneration and autoimmune disorders. The main types of DSCs include dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSCs), and stem cells from apical papilla (SCAP). Each type exhibits distinct advantages: easy access via minimally invasive procedures, multi-lineage differentiation potential, and excellent ethical acceptability. DSCs have demonstrated outstanding clinical efficacy in oral and maxillofacial regeneration, and their long-term safety has been verified. In oral tissue regeneration, DSCs are highly effective in oral tissue regeneration for critical applications such as the restoration of dental pulp vitality and periodontal tissue repair. A defining advantage of DSCs lies in their ability to integrate with host tissues and promote physiological regeneration, which render them a better option for oral tissue regenerative therapies. Beyond oral applications, DSCs also exhibit promising potential in the treatment of systemic diseases, including type Ⅱ diabetes and autoimmune diseases due to their immunomodulatory effects. Moreover, extracellular vesicles (EVs) derived from DSCs act as critical mediators for DSCs' paracrine functions. Possessing regulatory properties similar to their parental cells, EVs are extensively utilized in research targeting tissue repair, immunomodulation, and regenerative therapy—offering a "cell-free" strategy to mitigate the limitations associated with cell-based therapies. Despite these advancements, standardizing large-scale manufacturing, maintaining strict quality control, and clarifying the molecular mechanisms underlying the interaction of DSCs and their EVs with recipient tissues remain major obstacles to the clinical translation of these treatments into broad clinical use. Addressing these barriers will be critical to enhancing their clinical applicability and therapeutic efficacy. In conclusion, DSCs and their EVs represent a transformative approach in regenerative medicine, and increasing clinical evidence supports their application in oral and systemic diseases. Continuous innovation remains essential to unlocking the widespread clinical potential of DSCs.

Key words: Dental stem cells, Extracellular vesicles, Pulp regeneration, Periodontal restoration, Immunomodulation

CLC Number: 

  • R78
1
Han Y , Yang J , Fang J , et al. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases[J]. Signal Transduct Target Ther, 2022, 7 (1): 92.

doi: 10.1038/s41392-022-00932-0
2
Ma L , Chen C , Liu D , et al. Apoptotic extracellular vesicles are metabolized regulators nurturing the skin and hair[J]. Bioact Mater, 2023, 19, 626- 641.
3
Costela-Ruiz VJ , Melguizo-Rodríguez L , Bellotti C , et al. Different sources of mesenchymal stem cells for tissue regeneration: A guide to identifying the most favorable one in orthopedics and dentistry applications[J]. Int J Mol Sci, 2022, 23 (11): 6356.

doi: 10.3390/ijms23116356
4
Gronthos S , Mankani M , Brahim J , et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo[J]. Proc Natl Acad Sci USA, 2000, 97 (25): 13625- 13630.

doi: 10.1073/pnas.240309797
5
Seo BM , Miura M , Gronthos S , et al. Investigation of multipotent postnatal stem cells from human periodontal ligament[J]. Lancet, 2004, 364 (9429): 149- 155.

doi: 10.1016/S0140-6736(04)16627-0
6
Miura M , Gronthos S , Zhao M , et al. SHED: stem cells from human exfoliated deciduous teeth[J]. Proc Natl Acad Sci USA, 2003, 100 (10): 5807- 5812.

doi: 10.1073/pnas.0937635100
7
Sonoyama W , Liu Y , Fang D , et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine[J]. PLoS One, 2006, 1 (1): e79.

doi: 10.1371/journal.pone.0000079
8
Xu X , Chen C , Akiyama K , et al. Gingivae contain neural-crest and mesoderm-derived mesenchymal stem cells[J]. J Dent Res, 2013, 92 (9): 825- 832.

doi: 10.1177/0022034513497961
9
Shi S , Gronthos S . Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp[J]. J Bone Miner Res, 2003, 18 (4): 696- 704.

doi: 10.1359/jbmr.2003.18.4.696
10
Batouli S , Miura M , Brahim J , et al. Comparison of stem-cell-mediated osteogenesis and dentinogenesis[J]. J Dent Res, 2003, 82 (12): 976- 981.

doi: 10.1177/154405910308201208
11
Kerkis I , Kerkis A , Dozortsev D , et al. Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers[J]. Cells Tissues Organs, 2006, 184 (3/4): 105- 116.
12
Seo BM , Sonoyama W , Yamaza T , et al. SHED repair critical-size calvarial defects in mice[J]. Oral Dis, 2008, 14 (5): 428- 434.

doi: 10.1111/j.1601-0825.2007.01396.x
13
Xu J , Wang W , Kapila Y , et al. Multiple differentiation capacity of STRO-1+/CD146+ PDL mesenchymal progenitor cells[J]. Stem Cells Dev, 2009, 18 (3): 487- 496.

doi: 10.1089/scd.2008.0113
14
Sonoyama W , Liu Y , Yamaza T , et al. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: A pilot study[J]. J Endod, 2008, 34 (2): 166- 171.

doi: 10.1016/j.joen.2007.11.021
15
Huang GT , Sonoyama W , Liu Y , et al. The hidden treasure in apical papilla: The potential role in pulp/dentin regeneration and bioroot engi-neering[J]. J Endod, 2008, 34 (6): 645- 651.

doi: 10.1016/j.joen.2008.03.001
16
Zhang Q , Shi S , Liu Y , et al. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis[J]. J Immunol, 2009, 183 (12): 7787- 7798.

doi: 10.4049/jimmunol.0902318
17
Huang GT , Gronthos S , Shi S . Mesenchymal stem cells derived from dental tissues vs. those from other sources: Their biology and role in regenerative medicine[J]. J Dent Res, 2009, 88 (9): 792- 806.

doi: 10.1177/0022034509340867
18
Cordeiro MM , Dong Z , Kaneko T , et al. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth[J]. J Endod, 2008, 34 (8): 962- 969.

doi: 10.1016/j.joen.2008.04.009
19
Sui B , Chen C , Kou X , et al. Pulp stem cell-mediated functional pulp regeneration[J]. J Dent Res, 2019, 98 (1): 27- 35.

doi: 10.1177/0022034518808754
20
Guo H , Zhao W , Liu A , et al. SHED promote angiogenesis in stem cell-mediated dental pulp regeneration[J]. Biochem Biophys Res Commun, 2020, 529 (4): 1158- 1164.

doi: 10.1016/j.bbrc.2020.06.151
21
Itoh Y , Sasaki JI , Hashimoto M , et al. Pulp regeneration by 3-dimensional dental pulp stem cell constructs[J]. J Dent Res, 2018, 97 (10): 1137- 1143.

doi: 10.1177/0022034518772260
22
Gronthos S , Brahim J , Li W , et al. Stem cell properties of human dental pulp stem cells[J]. J Dent Res, 2002, 81 (8): 531- 535.

doi: 10.1177/154405910208100806
23
Demarco FF , Casagrande L , Zhang Z , et al. Effects of morphogen and scaffold porogen on the differentiation of dental pulp stem cells[J]. J Endod, 2010, 36 (11): 1805- 1811.

doi: 10.1016/j.joen.2010.08.031
24
Huang GT , Yamaza T , Shea LD , et al. Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model[J]. Tissue Eng Part A, 2010, 16 (2): 605- 615.

doi: 10.1089/ten.tea.2009.0518
25
Xuan K , Li B , Guo H , et al. Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth[J]. Sci Transl Med, 2018, 10 (455): eaaf3227.

doi: 10.1126/scitranslmed.aaf3227
26
Liang J , Zhao YJ , Li JQ , et al. A pilot study on biological characteristics of human CD24+ stem cells from the apical papilla[J]. J Dent Sci, 2022, 17 (1): 264- 275.

doi: 10.1016/j.jds.2021.01.012
27
Zhang X , Zhou Y , Li H , et al. Intravenous administration of DPSCs and BDNF improves neurological performance in rats with focal cerebral ischemia[J]. Int J Mol Med, 2018, 41 (6): 3185- 3194.
28
Gomes JAP , Geraldes Monteiro B , Melo GB , et al. Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells[J]. Invest Ophthalmol Vis Sci, 2010, 51 (3): 1408- 1414.

doi: 10.1167/iovs.09-4029
29
Yamaza T , Alatas FS , Yuniartha R , et al. In vivo hepatogenic capacity and therapeutic potential of stem cells from human exfoliated deciduous teeth in liver fibrosis in mice[J]. Stem Cell Res Ther, 2015, 6 (1): 171.

doi: 10.1186/s13287-015-0154-6
30
Hirata M , Ishigami M , Matsushita Y , et al. Multifaceted therapeutic benefits of factors derived from dental pulp stem cells for mouse liver fibrosis[J]. Stem Cells Transl Med, 2016, 5 (10): 1416- 1424.

doi: 10.5966/sctm.2015-0353
31
Ulusoy C , Zibandeh N , Yıldırım S , et al. Dental follicle mesenchymal stem cell administration ameliorates muscle weakness in MuSK-immunized mice[J]. J Neuroinflammation, 2015, 12, 231.

doi: 10.1186/s12974-015-0451-0
32
Mead B , Logan A , Berry M , et al. Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury[J]. Invest Ophthalmol Vis Sci, 2013, 54 (12): 7544- 7556.

doi: 10.1167/iovs.13-13045
33
Trubiani O , Giacoppo S , Ballerini P , et al. Alternative source of stem cells derived from human periodontal ligament: A new treatment for experimental autoimmune encephalomyelitis[J]. Stem Cell Res Ther, 2016, 7, 1.

doi: 10.1186/s13287-015-0253-4
34
Marei MK , El Backly RM . Dental mesenchymal stem cell-based translational regenerative dentistry: From artificial to biological replacement[J]. Front Bioeng Biotechnol, 2018, 6, 49.

doi: 10.3389/fbioe.2018.00049
35
Zhao Y , Wang L , Jin Y , et al. Fas ligand regulates the immunomodulatory properties of dental pulp stem cells[J]. J Dent Res, 2012, 91 (10): 948- 954.

doi: 10.1177/0022034512458690
36
Kwack KH , Lee JM , Park SH , et al. Human dental pulp stem cells suppress alloantigen-induced immunity by stimulating T cells to release transforming growth factor beta[J]. J Endod, 2017, 43 (1): 100- 108.

doi: 10.1016/j.joen.2016.09.005
37
Lee S , Zhang QZ , Karabucak B , et al. DPSCs from inflamed pulp modulate macrophage function via the TNF-α/IDO axis[J]. J Dent Res, 2016, 95 (11): 1274- 1281.

doi: 10.1177/0022034516657817
38
Liu Y , Zheng Y , Ding G , et al. Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine[J]. Stem Cells, 2008, 26 (4): 1065- 1073.

doi: 10.1634/stemcells.2007-0734
39
Tang X , Li W , Wen X , et al. Transplantation of dental tissue-derived mesenchymal stem cells ameliorates nephritis in lupus mice[J]. Ann Transl Med, 2019, 7 (7): 132.

doi: 10.21037/atm.2019.02.41
40
Chen M , Su W , Lin X , et al. Adoptive transfer of human gingiva-derived mesenchymal stem cells ameliorates collagen-induced arthritis via suppression of Th1 and Th17 cells and enhancement of regulatory T cell differentiation[J]. Arthritis Rheum, 2013, 65 (5): 1181- 1193.

doi: 10.1002/art.37894
41
Liu Y , Wang L , Liu S , et al. Transplantation of SHED prevents bone loss in the early phase of ovariectomy-induced osteoporosis[J]. J Dent Res, 2014, 93 (11): 1124- 1132.

doi: 10.1177/0022034514552675
42
Wei X , Yang M , Yue L , et al. Expert consensus on regenerative endodontic procedures[J]. Int J Oral Sci, 2022, 14 (1): 55.

doi: 10.1038/s41368-022-00206-z
43
Shinmura Y , Tsuchiya S , Hata KI , et al. Quiescent epithelial cell rests of Malassez can differentiate into ameloblast-like cells[J]. J Cell Physiol, 2008, 217 (3): 728- 738.

doi: 10.1002/jcp.21546
44
Goldberg M , Njeh A , Uzunoglu E . Is pulp inflammation a pre-requisite for pulp healing and regeneration?[J]. Mediators Inflamm, 2015, 2015, 347649.

doi: 10.1155/2015/347649
45
Sui B , Wu D , Xiang L , et al. Dental pulp stem cells: From discovery to clinical application[J]. J Endod, 2020, 46 (Suppl 9): S46- S55.
46
Nakashima M , Iohara K , Murakami M , et al. Pulp regeneration by transplantation of dental pulp stem cells in pulpitis: A pilot clinical study[J]. Stem Cell Res Ther, 2017, 8 (1): 61.

doi: 10.1186/s13287-017-0506-5
47
Nakashima M , Fukuyama F , Iohara K . Pulp regenerative cell therapy for mature molars: A report of 2 cases[J]. J Endod, 2022, 48 (10): 1334- 1340. e1.

doi: 10.1016/j.joen.2022.07.010
48
Lang NP , Bartold PM . Periodontal health[J]. J Periodontol, 2018, 89 (Suppl 1): S9- S16.
49
Deng Y , Liang Y , Liu X . Biomaterials for periodontal regeneration[J]. Dent Clin North Am, 2022, 66 (4): 659- 672.

doi: 10.1016/j.cden.2022.05.011
50
Guo S , Kang J , Ji B , et al. Periodontal-derived mesenchymal cell sheets promote periodontal regeneration in inflammatory microenvironment[J]. Tissue Eng Part A, 2017, 23 (13/14): 585- 596.
51
Venkataiah VS , Handa K , Njuguna MM , et al. Periodontal regeneration by allogeneic transplantation of adipose tissue derived multi-lineage progenitor stem cells in vivo[J]. Sci Rep, 2019, 9 (1): 921.

doi: 10.1038/s41598-018-37528-0
52
Fu X , Jin L , Ma P , et al. Allogeneic stem cells from deciduous teeth in treatment for periodontitis in miniature swine[J]. J Periodontol, 2014, 85 (6): 845- 851.

doi: 10.1902/jop.2013.130254
53
Hu J , Cao Y , Xie Y , et al. Periodontal regeneration in swine after cell injection and cell sheet transplantation of human dental pulp stem cells following good manufacturing practice[J]. Stem Cell Res Ther, 2016, 7 (1): 130.

doi: 10.1186/s13287-016-0362-8
54
Takewaki M , Kajiya M , Takeda K , et al. MSC/ECM cellular complexes induce periodontal tissue regeneration[J]. J Dent Res, 2017, 96 (9): 984- 991.

doi: 10.1177/0022034517708770
55
Sui BD , Zheng CX , Zhao WM , et al. Mesenchymal condensation in tooth development and regeneration: A focus on translational aspects of organogenesis[J]. Physiol Rev, 2023, 103 (3): 1899- 1964.

doi: 10.1152/physrev.00019.2022
56
Stavropoulos A , Karring T . Five-year results of guided tissue regeneration in combination with deproteinized bovine bone (Bio-Oss) in the treatment of intrabony periodontal defects: A case series report[J]. Clin Oral Investig, 2005, 9 (4): 271- 277.

doi: 10.1007/s00784-005-0002-7
57
Stavropoulos A , Windisch P , Gera I , et al. A phase Ⅱa ran-domized controlled clinical and histological pilot study evaluating rhGDF-5/β-TCP for periodontal regeneration[J]. J Clin Periodontol, 2011, 38 (11): 1044- 1054.

doi: 10.1111/j.1600-051X.2011.01778.x
58
Chen FM , Gao LN , Tian BM , et al. Treatment of periodontal intrabony defects using autologous periodontal ligament stem cells: A randomized clinical trial[J]. Stem Cell Res Ther, 2016, 7, 33.

doi: 10.1186/s13287-016-0288-1
59
Guo H , Li B , Wu M , et al. Odontogenesis-related developmental microenvironment facilitates deciduous dental pulp stem cell aggregates to revitalize an avulsed tooth[J]. Biomaterials, 2021, 279, 121223.

doi: 10.1016/j.biomaterials.2021.121223
60
O'Connor RC , Shakib K , Brennan PA . Recent advances in the management of oral and maxillofacial trauma[J]. Br J Oral Maxillofac Surg, 2015, 53 (10): 913- 921.

doi: 10.1016/j.bjoms.2015.08.261
61
Vincent AG , Gunter AE , Ducic Y , et al. Maxillofacial bony considerations in facial transplantation[J]. Facial Plast Surg, 2021, 37 (6): 735- 740.

doi: 10.1055/s-0041-1726443
62
Chai Y , Jiang X , Ito Y , et al. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis[J]. Development, 2000, 127 (8): 1671- 1679.

doi: 10.1242/dev.127.8.1671
63
D'Aquino R , De Rosa A , Lanza V , et al. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge bio complexes[J]. Eur Cell Mater, 2009, 18, 75- 83.

doi: 10.22203/eCM.v018a07
64
de Souza Tesch R , Takamori ER , Menezes K , et al. Temporomandibular joint regeneration: Proposal of a novel treatment for condylar resorption after orthognathic surgery using transplantation of autologous nasal septum chondrocytes, and the first human case report[J]. Stem Cell Res Ther, 2018, 9 (1): 94.

doi: 10.1186/s13287-018-0806-4
65
Undt G , Jahl M , Pohl S , et al. Matrix-associated chondrocyte transplantation for reconstruction of articulating surfaces in the temporomandibular joint: A pilot study covering medium- and long-term outcomes of 6 patients[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2018, 126 (2): 117- 128.

doi: 10.1016/j.oooo.2018.02.017
66
De Riu G , Vaira LA , Carta E , et al. Bone marrow nucleated cell concentrate autograft in temporomandibular joint degenerative disorders: 1-year results of a randomized clinical trial[J]. J Craniomaxillofac Surg, 2019, 47 (11): 1728- 1738.

doi: 10.1016/j.jcms.2018.11.025
67
Yang Y , Huang C , Zheng H , et al. Superwettable and injectable GelMA-MSC microspheres promote cartilage repair in temporomandibular joints[J]. Front Bioeng Biotechnol, 2022, 10, 1026911.

doi: 10.3389/fbioe.2022.1026911
68
Gomez M , Wittig O , Diaz-Solano D , et al. Mesenchymal stromal cell transplantation induces regeneration of large and full-thickness cartilage defect of the temporomandibular joint[J]. Cartilage, 2021, 13 (Suppl 1): S1814- S1821.
69
Ogasawara N , Kano F , Hashimoto N , et al. Factors secreted from dental pulp stem cells show multifaceted benefits for treating experimental temporomandibular joint osteoarthritis[J]. Osteoarthritis Cartilage, 2020, 28 (6): 831- 841.

doi: 10.1016/j.joca.2020.03.010
70
Zaki AA , Zaghloul M , Helal ME , et al. Impact of autologous bone marrow-derived stem cells on degenerative changes of articulating surfaces associated with the arthritic temporomandibular joint: An experimental study in rabbits[J]. J Oral Maxillofac Surg, 2017, 75 (12): 2529- 2539.

doi: 10.1016/j.joms.2017.05.001
71
Ou Q , Qiao X , Li Z , et al. Apoptosis releases hydrogen sulfide to inhibit Th17 cell differentiation[J]. Cell Metab, 2024, 36 (1): 78- 89. e5.

doi: 10.1016/j.cmet.2023.11.012
72
Liu D , Kou X , Chen C , et al. Circulating apoptotic bodies maintain mesenchymal stem cell homeostasis and ameliorate osteopenia via transferring multiple cellular factors[J]. Cell Res, 2018, 28 (9): 918- 933.

doi: 10.1038/s41422-018-0070-2
73
Kinoshita N , Sasaki Y , Marukawa E , et al. Crosslinked nanogel-based porous hydrogel as a functional scaffold for tongue muscle regeneration[J]. J Biomater Sci Polym Ed, 2020, 31 (10): 1254- 1271.

doi: 10.1080/09205063.2020.1744246
74
Bunaprasert T , Hadlock T , Marler J , et al. Tissue engineered muscle implantation for tongue reconstruction: A preliminary report[J]. Laryngoscope, 2003, 113 (10): 1792- 1797.

doi: 10.1097/00005537-200310000-00025
75
Xu Q , Shanti RM , Zhang Q , et al. A gingiva-derived mesenchymal stem cell-laden porcine small intestinal submucosa extracellular matrix construct promotes myomucosal regeneration of the tongue[J]. Tissue Eng Part A, 2017, 23 (7/8): 301- 312.
76
Zhang Y , Shi S , Xu Q , et al. SIS-ECM laden with GMSC-derived exosomes promote taste bud regeneration[J]. J Dent Res, 2019, 98 (2): 225- 233.

doi: 10.1177/0022034518804531
77
Deng Y , Xu Y , Liu H , et al. Electrical stimulation promotes regeneration and re-myelination of axons of injured facial nerve in rats[J]. Neurol Res, 2018, 40 (3): 231- 238.

doi: 10.1080/01616412.2018.1428390
78
Ali SA , Rosko AJ , Hanks JE , et al. Effect of motor versus sensory nerve autografts on regeneration and functional outcomes of rat facial nerve reconstruction[J]. Sci Rep, 2019, 9 (1): 8353.

doi: 10.1038/s41598-019-44342-9
79
Achilleos A , Trainor PA . Neural crest stem cells: Discovery, properties and potential for therapy[J]. Cell Res, 2012, 22 (2): 288- 304.

doi: 10.1038/cr.2012.11
80
Zhu Y , Zhang P , Gu RL , et al. Origin and clinical applications of neural crest-derived dental stem cells[J]. Chin J Dent Res, 2018, 21 (2): 89- 100.
81
Kaukua N , Shahidi MK , Konstantinidou C , et al. Glial origin of mesenchymal stem cells in a tooth model system[J]. Nature, 2014, 513 (7519): 551- 554.

doi: 10.1038/nature13536
82
Ansari S , Diniz IM , Chen C , et al. Human periodontal liga-ment- and gingiva-derived mesenchymal stem cells promote nerve regeneration when encapsulated in alginate/hyaluronic acid 3D scaffold[J]. Adv Healthc Mater, 2017, 6 (24): 201700670.
83
Mu X , Liu H , Yang S , et al. Chitosan tubes inoculated with dental pulp stem cells and stem cell factor enhance facial nerve-vascularized regeneration in rabbits[J]. ACS Omega, 2022, 7 (22): 18509- 18520.

doi: 10.1021/acsomega.2c01176
84
Zhang Q , Nguyen PD , Shi S , et al. 3D bio-printed scaffold-free nerve constructs with human gingiva-derived mesenchymal stem cells promote rat facial nerve regeneration[J]. Sci Rep, 2018, 8 (1): 6634.

doi: 10.1038/s41598-018-24888-w
85
Yang R , Yu T , Liu D , et al. Hydrogen sulfide promotes immunomodulation of gingiva-derived mesenchymal stem cells via the Fas/FasL coupling pathway[J]. Stem Cell Res Ther, 2018, 9 (1): 62.

doi: 10.1186/s13287-018-0804-6
86
Chalisserry EP , Nam SY , Park SH , et al. Therapeutic potential of dental stem cells[J]. J Tissue Eng, 2017, 8, 2041731417702531.

doi: 10.1177/2041731417702531
87
Campanella V . Dental Stem Cells: Current research and future applications[J]. Eur J Paediatr Dent, 2018, 19 (4): 257.
88
Zhao L , Li Y , Kou X , et al. Stem cells from human exfoliated deciduous teeth ameliorate autistic-like behaviors of SHANK3 mutant beagle dogs[J]. Stem Cells Transl Med, 2022, 11 (7): 778- 789.

doi: 10.1093/stcltm/szac028
89
Li W , Jiao X , Song J , et al. Therapeutic potential of stem cells from human exfoliated deciduous teeth infusion into patients with type 2 diabetes depends on basal lipid levels and islet function[J]. Stem Cells Transl Med, 2021, 10 (7): 956- 967.

doi: 10.1002/sctm.20-0303
90
Suda S , Nito C , Ihara M , et al. Randomised placebo-controlled multicentre trial to evaluate the efficacy and safety of JTR-161, allogeneic human dental pulp stem cells, in patients with Acute Ischaemic stRoke (J-REPAIR)[J]. BMJ Open, 2022, 12 (5): e054269.

doi: 10.1136/bmjopen-2021-054269
91
Bonsergent E , Grisard E , Buchrieser J , et al. Quantitative characterization of extracellular vesicle uptake and content delivery within mammalian cells[J]. Nat Commun, 2021, 12 (1): 1864.

doi: 10.1038/s41467-021-22126-y
92
Jeppesen DK , Fenix AM , Franklin JL , et al. Reassessment of exosome composition[J]. Cell, 2019, 177 (2): 428- 445. e18.

doi: 10.1016/j.cell.2019.02.029
93
Catalano M , O'Driscoll L . Inhibiting extracellular vesicles formation and release: A review of EV inhibitors[J]. J Extracell Vesicles, 2020, 9 (1): 1703244.

doi: 10.1080/20013078.2019.1703244
94
Cheng L , Hill AF . Therapeutically harnessing extracellular vesicles[J]. Nat Rev Drug Discov, 2022, 21 (5): 379- 399.

doi: 10.1038/s41573-022-00410-w
95
Park SJ , Kim JM , Kim J , et al. Molecular mechanisms of biogenesis of apoptotic exosome-like vesicles and their roles as damage-associated molecular patterns[J]. Proc Natl Acad Sci USA, 2018, 115 (50): E11721- E11730.
96
Phan TK , Fonseka P , Tixeira R , et al. Pannexin-1 channel regulates nuclear content packaging into apoptotic bodies and their size[J]. Proteomics, 2021, 21 (13/14): e2000097.
97
Poon IKH , Chiu YH , Armstrong AJ , et al. Unexpected link between an antibiotic, pannexin channels and apoptosis[J]. Nature, 2014, 507 (7492): 329- 334.

doi: 10.1038/nature13147
98
Dou G , Tian R , Liu X , et al. Chimeric apoptotic bodies functionalized with natural membrane and modular delivery system for inflammation modulation[J]. Sci Adv, 2020, 6 (30): eaba2987.

doi: 10.1126/sciadv.aba2987
99
Zhao B , Chen Q , Zhao L , et al. Periodontal ligament stem cell-derived small extracellular vesicles embedded in matrigel enhance bone repair through the adenosine receptor signaling pathway[J]. Int J Nanomedicine, 2022, 17, 519- 536.

doi: 10.2147/IJN.S346755
100
Huang CY , Vesvoranan O , Yin X , et al. Anti-inflammatory effects of conditioned medium of periodontal ligament-derived stem cells on chondrocytes, synoviocytes, and meniscus cells[J]. Stem Cells Dev, 2021, 30 (10): 537- 547.

doi: 10.1089/scd.2021.0010
101
Zhang Z , Shuai Y , Zhou F , et al. PDLSCs regulate angiogenesis of periodontal ligaments via VEGF transferred by exosomes in periodontitis[J]. Int J Med Sci, 2020, 17 (5): 558- 567.

doi: 10.7150/ijms.40918
102
Fu Y , Sui B , Xiang L , et al. Emerging understanding of apoptosis in mediating mesenchymal stem cell therapy[J]. Cell Death Dis, 2021, 12 (6): 596.

doi: 10.1038/s41419-021-03883-6
103
Kugeratski FG , Hodge K , Lilla S , et al. Quantitative proteomics identifies the core proteome of exosomes with syntenin-1 as the highest abundant protein and a putative universal biomarker[J]. Nat Cell Biol, 2021, 23 (6): 631- 641.

doi: 10.1038/s41556-021-00693-y
104
Luo P , Jiang C , Ji P , et al. Exosomes of stem cells from human exfoliated deciduous teeth as an anti-inflammatory agent in temporomandibular joint chondrocytes via miR-100-5p/mTOR[J]. Stem Cell Res Ther, 2019, 10 (1): 216.

doi: 10.1186/s13287-019-1341-7
105
Wang M , Li J , Ye Y , et al. SHED-derived conditioned exosomes enhance the osteogenic differentiation of PDLSCs via Wnt and BMP signaling in vitro[J]. Differentiation, 2020, 111, 1- 11.

doi: 10.1016/j.diff.2019.10.003
106
Li Y , Yang YY , Ren JL , et al. Exosomes secreted by stem cells from human exfoliated deciduous teeth contribute to functional recovery after traumatic brain injury by shifting microglia M1/M2 polarization in rats[J]. Stem Cell Res Ther, 2017, 8 (1): 198.

doi: 10.1186/s13287-017-0648-5
107
Zheng Y , Dong C , Yang J , et al. Exosomal microRNA-155-5p from PDLSCs regulated Th17/Treg balance by targeting sirtuin-1 in chronic periodontitis[J]. J Cell Physiol, 2019, 234 (11): 20662- 20674.

doi: 10.1002/jcp.28671
108
Lan Q , Xiao X , Bi X , et al. Effects of periodontal ligament stem cell-derived exosomes on osteoblastic proliferation, migration, differentiation, apoptosis, and signaling pathways[J]. Oral Dis, 2024, 30 (2): 710- 718.

doi: 10.1111/odi.14375
109
Yu S , Chen X , Liu Y , et al. Exosomes derived from stem cells from the apical papilla alleviate inflammation in rat pulpitis by upregulating regulatory T cells[J]. Int Endod J, 2022, 55 (5): 517- 530.

doi: 10.1111/iej.13721
110
Wang A , Liu J , Zhuang X , et al. Identification and comparison of PiRNA expression profiles of exosomes derived from human stem cells from the apical papilla and bone marrow mesenchymal stem cells[J]. Stem Cells Dev, 2020, 29 (8): 511- 520.

doi: 10.1089/scd.2019.0277
111
Kou X , Xu X , Chen C , et al. The Fas/Fap-1/Cav-1 complex regulates IL-1RA secretion in mesenchymal stem cells to accelerate wound healing[J]. Sci Transl Med, 2018, 10 (432): eaai8524.

doi: 10.1126/scitranslmed.aai8524
112
Wang R , Hao M , Kou X , et al. Apoptotic vesicles ameliorate lupus and arthritis via phosphatidylserine-mediated modulation of T cell receptor signaling[J]. Bioact Mater, 2023, 25, 472- 484.
[1] Chun-ling CAO,Cong-chong YANG,Xiao-zhong QU,Bing HAN,Xiao-yan WANG. Effects of the injectable glycol-chitosan based hydrogel on the proliferation and differentiation of human dental pulp cells [J]. Journal of Peking University(Health Sciences), 2020, 52(1): 10-17.
[2] Qian-li ZHANG,Chong-yang YUAN,Li LIU,Shi-peng WEN,Xiao-yan WANG. Effects of electrospun collagen nanofibrous matrix on the biological behavior of human dental pulp cells [J]. Journal of Peking University(Health Sciences), 2019, 51(1): 28-34.
[3] YANG Rui-li, YU Ting-ting, ZHOU Yan-heng. Acetylsalicylic acid treatment enhanced immunomodulatory function of mesenchymal stem cells derived from gingiva [J]. Journal of Peking University(Health Sciences), 2017, 49(5): 872-877.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!