Journal of Peking University (Health Sciences) ›› 2024, Vol. 56 ›› Issue (5): 775-780. doi: 10.19723/j.issn.1671-167X.2024.05.004
Previous Articles Next Articles
Enci XUE1, Xi CHEN1, Xueheng WANG1, Siyue WANG1, Mengying WANG1, Jin LI1, Xueying QIN1, Yiqun WU1, Nan LI2, Jing LI3, Zhibo ZHOU2, Hongping ZHU2, Tao WU1,*(), Dafang CHEN1, Yonghua HU1
CLC Number:
1 |
Mossey PA , Little J , Munger RG , et al. Cleft lip and palate[J]. Lancet, 2009, 374 (9703): 1773- 1785.
doi: 10.1016/S0140-6736(09)60695-4 |
2 |
Wang M , Yuan Y , Wang Z , et al. Prevalence of orofacial clefts among live births in China: A systematic review and meta-analysis[J]. Birth Defects Res, 2017, 109 (13): 1011- 1019.
doi: 10.1002/bdr2.1043 |
3 |
Sivertsen A , Wilcox AJ , Skjaerven R , et al. Familial risk of oral clefts by morphological type and severity: population based cohort study of first degree relatives[J]. BMJ, 2008, 336 (7641): 432- 434.
doi: 10.1136/bmj.39458.563611.AE |
4 |
Grosen D , Bille C , Petersen I , et al. Risk of oral clefts in twins[J]. Epidemiology, 2011, 22 (3): 313- 319.
doi: 10.1097/EDE.0b013e3182125f9c |
5 |
Leslie EJ , Carlson JC , Shaffer JR , et al. Association studies of low-frequency coding variants in nonsyndromic cleft lip with or without cleft palate[J]. Am J Med Genet A, 2017, 173 (6): 1531- 1538.
doi: 10.1002/ajmg.a.38210 |
6 |
Eichler EE , Flint J , Gibson G , et al. Missing heritability and strategies for finding the underlying causes of complex disease[J]. Nat Rev Genet, 2010, 11 (6): 446- 450.
doi: 10.1038/nrg2809 |
7 |
Yang J , Zeng J , Goddard ME , et al. Concepts, estimation and interpretation of SNP-based heritability[J]. Nat Genet, 2017, 49 (9): 1304- 1310.
doi: 10.1038/ng.3941 |
8 |
Eaves LJ , Last KA , Young PA , et al. Model-fitting approaches to the analysis of human behaviour[J]. Heredity (Edinb), 1978, 41 (3): 249- 320.
doi: 10.1038/hdy.1978.101 |
9 |
Keller MC , Coventry WL . Quantifying and addressing parameter indeterminacy in the classical twin design[J]. Twin Res Hum Genet, 2005, 8 (3): 201- 213.
doi: 10.1375/twin.8.3.201 |
10 |
Bulik-Sullivan BK , Loh PR , Finucane HK , et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies[J]. Nat Genet, 2015, 47 (3): 291- 295.
doi: 10.1038/ng.3211 |
11 |
Zhu H , Zhou X . Statistical methods for SNP heritability estimation and partition: A review[J]. Comput Struct Biotechnol J, 2020, 18, 1557- 1568.
doi: 10.1016/j.csbj.2020.06.011 |
12 |
Consortium GP . An integrated map of genetic variation from 1 092 human genomes[J]. Nature, 2012, 491 (7422): 56- 65.
doi: 10.1038/nature11632 |
13 |
Kircher M , Witten DM , Jain P , et al. A general framework for estimating the relative pathogenicity of human genetic variants[J]. Nat Genet, 2014, 46 (3): 310- 315.
doi: 10.1038/ng.2892 |
14 |
GTEx Consortium . Human genomics. The genotype-tissue expression (GTEx) pilot analysis: Multitissue gene regulation in humans[J]. Science, 2015, 348 (6235): 648- 660.
doi: 10.1126/science.1262110 |
15 |
Roadmap Epigenomics Consortium . Integrative analysis of 111 reference human epigenomes[J]. Nature, 2015, 518 (7539): 317- 330.
doi: 10.1038/nature14248 |
16 |
Won HH , Natarajan P , Dobbyn A , et al. Disproportionate contributions of select genomic compartments and cell types to genetic risk for coronary artery disease[J]. PLoS Genet, 2015, 11 (10): e1005622.
doi: 10.1371/journal.pgen.1005622 |
17 |
Beaty TH , Murray JC , Marazita ML , et al. A genome-wide association study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4[J]. Nat Genet, 2010, 42 (6): 525- 529.
doi: 10.1038/ng.580 |
18 |
Haeussler M , Zweig AS , Tyner C , et al. The UCSC genome browser database: 2019 update[J]. Nucleic Acids Res, 2019, 47 (D1): D853- D858.
doi: 10.1093/nar/gky1095 |
19 |
Hoffman MM , Ernst J , Wilder SP , et al. Integrative annotation of chromatin elements from ENCODE data[J]. Nucleic Acids Res, 2013, 41 (2): 827- 841.
doi: 10.1093/nar/gks1284 |
20 |
Hnisz D , Abraham BJ , Lee TI , et al. Super-enhancers in the control of cell identity and disease[J]. Cell, 2013, 155 (4): 934- 947.
doi: 10.1016/j.cell.2013.09.053 |
21 |
Finucane HK , Bulik-Sullivan B , Gusev A , et al. Partitioning heritability by functional annotation using genome-wide association summary statistics[J]. Nat Genet, 2015, 47 (11): 1228- 1235.
doi: 10.1038/ng.3404 |
22 |
Witte JS , Visscher PM , Wray NR . The contribution of genetic variants to disease depends on the ruler[J]. Nat Rev Genet, 2014, 15 (11): 765- 776.
doi: 10.1038/nrg3786 |
23 | Ludwig KU , Böhmer AC , Bowes J , et al. Imputation of orofacial clefting data identifies novel risk loci and sheds light on the genetic background of cleft lip ± cleft palate and cleft palate only[J]. Hum Mol Genet, 2017, 26 (4): 829- 842. |
24 |
Wood AR , Esko T , Yang J , et al. Defining the role of common variation in the genomic and biological architecture of adult human height[J]. Nat Genet, 2014, 46 (11): 1173- 1186.
doi: 10.1038/ng.3097 |
25 |
Locke AE , Kahali B , Berndt SI , et al. Genetic studies of body mass index yield new insights for obesity biology[J]. Nature, 2015, 518 (7538): 197- 206.
doi: 10.1038/nature14177 |
26 |
Pantelis C , Papadimitriou GN , Papiol S , et al. Biological insights from 108 schizophrenia-associated genetic loci[J]. Nature, 2014, 511 (7510): 421- 427.
doi: 10.1038/nature13595 |
27 |
Okada Y , Wu D , Trynka G , et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery[J]. Nature, 2014, 506 (7488): 376- 381.
doi: 10.1038/nature12873 |
28 |
Liu JZ , van Sommeren S , Huang H , et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations[J]. Nat Genet, 2015, 47 (9): 979- 986.
doi: 10.1038/ng.3359 |
29 |
Yu Y , Zuo X , He M , et al. Genome-wide analyses of non-syndromic cleft lip with palate identify 14 novel loci and genetic heterogeneity[J]. Nat Commun, 2017, 8, 14364.
doi: 10.1038/ncomms14364 |
30 |
Suazo J , Recabarren AS , Marín NR , et al. Association between IRF6 variants and nonsyndromic cleft lip with or without cleft palate in Chile[J]. Reprod Sci, 2020, 27 (10): 1857- 1862.
doi: 10.1007/s43032-020-00203-9 |
31 |
Zucchero TM , Cooper ME , Maher BS , et al. Interferon regulatory factor 6 (IRF6) gene variants and the risk of isolated cleft lip or palate[J]. N Engl J Med, 2004, 351 (8): 769- 780.
doi: 10.1056/NEJMoa032909 |
32 |
Rahimov F , Marazita ML , Visel A , et al. Disruption of an AP-2alpha binding site in an IRF6 enhancer is associated with cleft lip[J]. Nat Genet, 2008, 40 (11): 1341- 1347.
doi: 10.1038/ng.242 |
33 |
Morris VE , Hashmi SS , Zhu L , et al. Evidence for craniofacial enhancer variation underlying nonsyndromic cleft lip and palate[J]. Hum Genet, 2020, 139 (10): 1261- 1272.
doi: 10.1007/s00439-020-02169-9 |
34 |
Whyte WA , Orlando DA , Hnisz D , et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes[J]. Cell, 2013, 153 (2): 307- 319.
doi: 10.1016/j.cell.2013.03.035 |
35 |
Gröschel S , Sanders MA , Hoogenboezem R , et al. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia[J]. Cell, 2014, 157 (2): 369- 381.
doi: 10.1016/j.cell.2014.02.019 |
36 | Visel A , Minovitsky S , Dubchak I , et al. VISTA enhancer browser: A database of tissue-specific human enhancers[J]. Nucleic Acids Res, 2007, 35 (Database issue): D88- D92. |
37 | Gao T , Qian J . EnhancerAtlas 2.0: An updated resource with enhancer annotation in 586 tissue/cell types across nine species[J]. Nucleic Acids Res, 2020, 48 (D1): D58- D64. |
38 |
Evans LM , Tahmasbi R , Vrieze SI , et al. Comparison of methods that use whole genome data to estimate the heritability and genetic architecture of complex traits[J]. Nat Genet, 2018, 50 (5): 737- 745.
doi: 10.1038/s41588-018-0108-x |
[1] | Tianjiao HOU,Zhibo ZHOU,Zhuqing WANG,Mengying WANG,Siyue WANG,Hexiang PENG,Huangda GUO,Yixin LI,Hanyu ZHANG,Xueying QIN,Yiqun WU,Hongchen ZHENG,Jing LI,Tao WU,Hongping ZHU. Gene-gene/gene-environment interaction of transforming growth factor-β signaling pathway and the risk of non-syndromic oral clefts [J]. Journal of Peking University (Health Sciences), 2024, 56(3): 384-389. |
[2] | Meng-ying WANG,Wen-yong LI,Ren ZHOU,Si-yue WANG,Dong-jing LIU,Hong-chen ZHENG,Zhi-bo ZHOU,Hong-ping ZHU,Tao WU,Yong-hua HU. Association study between haplotypes of WNT signaling pathway genes and nonsyndromic oral clefts among Chinese Han populations [J]. Journal of Peking University (Health Sciences), 2022, 54(3): 394-399. |
[3] | Wen-yong LI,Meng-ying WANG,Ren ZHOU,Si-yue WANG,Hong-chen ZHENG,Hong-ping ZHU,Zhi-bo ZHOU,Tao WU,Hong WANG,Bing SHI. Exploring parent-of-origin effects for non-syndromic cleft lip with or without cleft palate on PTCH1, PTCH2, SHH, SMO genes in Chinese case-parent trios [J]. Journal of Peking University (Health Sciences), 2020, 52(5): 809-814. |
[4] | Ren ZHOU,Hong-chen ZHENG,Wen-yong LI,Meng-ying WANG,Si-yue WANG,Nan LI,Jing LI,Zhi-bo ZHOU,Tao WU,Hong-ping ZHU. Exploring the association between SPRY gene family and non-syndromic oral clefts among Chinese populations using data of a next-generation sequencing study [J]. Journal of Peking University(Health Sciences), 2019, 51(3): 564-570. |
|