Journal of Peking University (Health Sciences) ›› 2024, Vol. 56 ›› Issue (5): 775-780. doi: 10.19723/j.issn.1671-167X.2024.05.004

Previous Articles     Next Articles

Single nucleotide polymorphism heritability of non-syndromic cleft lip with or without cleft palate in Chinese population

Enci XUE1, Xi CHEN1, Xueheng WANG1, Siyue WANG1, Mengying WANG1, Jin LI1, Xueying QIN1, Yiqun WU1, Nan LI2, Jing LI3, Zhibo ZHOU2, Hongping ZHU2, Tao WU1,*(), Dafang CHEN1, Yonghua HU1   

  1. 1. Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
    2. Department of Oral and Maxillofacial Surgery, Peking University School of Stomatology, Beijing 100081, China
    3. Department of Pediatric Dentistry, Peking University School of Stomatology, Beijing 100081, China
  • Received:2021-03-18 Online:2024-10-18 Published:2024-10-16
  • Contact: Tao WU E-mail:twu@bjmu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(81102178)

RICH HTML

  

Abstract:

Objective: To delve into the intricate relationship between common genetic variations across the entire genome and the risk of non-syndromic cleft lip with or without cleft palate (NSCL/P). Methods: Utilizing summary statistics data from genome-wide association studies (GWAS), a thorough investigation to evaluate the impact of common variations on the genome were undertook. This involved assessing single nucleotide polymorphism (SNP) heritability across the entire genome, as well as within specific genomic regions. To ensure the robustness of our analysis, stringent quality control measures were applied to the GWAS summary statistics data. Criteria for inclusion encompassed the absence of missing values, a minor allele frequency ≥1%, P-values falling within the range of 0 to 1, and clear SNP strand orientation. SNP meeting these stringent criteria were then meticulously included in our analysis. The SNP heritability of NSCL/P was calculated using linkage disequilibrium score regression. Additionally, hierarchical linkage disequilibrium score regression to partition SNP heritability within coding regions, promoters, introns, enhancers, and super enhancers were employed, and the enrichment levels within different genomic regions using LDSC (v1.0.1) software were further elucidated. Results: Our study drew upon GWAS summary statistics data obtained from 806 NSCL/P trios, comprising a total of 2 418 individuals from the Chinese population. Following rigorous quality control procedures, 490 593 out of 492 993 SNP were deemed suitable for inclusion in SNP heritability calculations. The observed SNP heritability of NSCL/P was 0.55 (95%CI: 0.28-0.82). Adjusting for the elevated disease pre-valence within our sample, the SNP heritability scaled down to 0.37 (95%CI: 0.19-0.55) based on the prevalence observed in the general Chinese population. Notably, our enrichment analysis unveiled significant enrichment of SNP heritability within enhancer regions (15.70, P=0.04) and super enhancer regions (3.18, P=0.03). Conclusion: Our study sheds light on the intricate interplay between common genetic variations and the risk of NSCL/P in the Chinese population. By elucidating the SNP heritability landscape across different genomic regions, we contribute valuable insights into the genetic basis of NSCL/P. The significant enrichment of SNP heritability within enhancer and super enhancer regions underscores the potential role of these regulatory elements in shaping the genetic susceptibility to NSCL/P. This paves the way for further research aimed at uncovering novel genetic pathogenic factors underlying NSCL/P pathogenesis.

Key words: Non-syndromic cleft lip with or without cleft palate, Single nucleotide polymorphism heritability, Case-parent trios

CLC Number: 

  • R394.1

Table 1

Regional and gender distribution of 806 NSCL/P trios in China"

Site Male Female Total
China Taiwan, n 139 94 233
Shandong, n 193 81 274
Hubei, n 132 55 187
Sichuan, n 75 37 112
Total, n 539 267 806

Table 2

Partitioning SNP heritability results of NSCL/P"

Annotation Proportion of SNP Proportion of SNP heritability Enrichment P for enrichment
Coding 0.014 0.035 2.44 0.91
Promoter 0.046 0.144 3.12 0.70
Intron 0.388 0.289 0.74 0.63
Enhancer 0.042 0.654 15.70 0.04
Super-enhancer 0.167 0.532 3.18 0.03
1 Mossey PA , Little J , Munger RG , et al. Cleft lip and palate[J]. Lancet, 2009, 374 (9703): 1773- 1785.
doi: 10.1016/S0140-6736(09)60695-4
2 Wang M , Yuan Y , Wang Z , et al. Prevalence of orofacial clefts among live births in China: A systematic review and meta-analysis[J]. Birth Defects Res, 2017, 109 (13): 1011- 1019.
doi: 10.1002/bdr2.1043
3 Sivertsen A , Wilcox AJ , Skjaerven R , et al. Familial risk of oral clefts by morphological type and severity: population based cohort study of first degree relatives[J]. BMJ, 2008, 336 (7641): 432- 434.
doi: 10.1136/bmj.39458.563611.AE
4 Grosen D , Bille C , Petersen I , et al. Risk of oral clefts in twins[J]. Epidemiology, 2011, 22 (3): 313- 319.
doi: 10.1097/EDE.0b013e3182125f9c
5 Leslie EJ , Carlson JC , Shaffer JR , et al. Association studies of low-frequency coding variants in nonsyndromic cleft lip with or without cleft palate[J]. Am J Med Genet A, 2017, 173 (6): 1531- 1538.
doi: 10.1002/ajmg.a.38210
6 Eichler EE , Flint J , Gibson G , et al. Missing heritability and strategies for finding the underlying causes of complex disease[J]. Nat Rev Genet, 2010, 11 (6): 446- 450.
doi: 10.1038/nrg2809
7 Yang J , Zeng J , Goddard ME , et al. Concepts, estimation and interpretation of SNP-based heritability[J]. Nat Genet, 2017, 49 (9): 1304- 1310.
doi: 10.1038/ng.3941
8 Eaves LJ , Last KA , Young PA , et al. Model-fitting approaches to the analysis of human behaviour[J]. Heredity (Edinb), 1978, 41 (3): 249- 320.
doi: 10.1038/hdy.1978.101
9 Keller MC , Coventry WL . Quantifying and addressing parameter indeterminacy in the classical twin design[J]. Twin Res Hum Genet, 2005, 8 (3): 201- 213.
doi: 10.1375/twin.8.3.201
10 Bulik-Sullivan BK , Loh PR , Finucane HK , et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies[J]. Nat Genet, 2015, 47 (3): 291- 295.
doi: 10.1038/ng.3211
11 Zhu H , Zhou X . Statistical methods for SNP heritability estimation and partition: A review[J]. Comput Struct Biotechnol J, 2020, 18, 1557- 1568.
doi: 10.1016/j.csbj.2020.06.011
12 Consortium GP . An integrated map of genetic variation from 1 092 human genomes[J]. Nature, 2012, 491 (7422): 56- 65.
doi: 10.1038/nature11632
13 Kircher M , Witten DM , Jain P , et al. A general framework for estimating the relative pathogenicity of human genetic variants[J]. Nat Genet, 2014, 46 (3): 310- 315.
doi: 10.1038/ng.2892
14 GTEx Consortium . Human genomics. The genotype-tissue expression (GTEx) pilot analysis: Multitissue gene regulation in humans[J]. Science, 2015, 348 (6235): 648- 660.
doi: 10.1126/science.1262110
15 Roadmap Epigenomics Consortium . Integrative analysis of 111 reference human epigenomes[J]. Nature, 2015, 518 (7539): 317- 330.
doi: 10.1038/nature14248
16 Won HH , Natarajan P , Dobbyn A , et al. Disproportionate contributions of select genomic compartments and cell types to genetic risk for coronary artery disease[J]. PLoS Genet, 2015, 11 (10): e1005622.
doi: 10.1371/journal.pgen.1005622
17 Beaty TH , Murray JC , Marazita ML , et al. A genome-wide association study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4[J]. Nat Genet, 2010, 42 (6): 525- 529.
doi: 10.1038/ng.580
18 Haeussler M , Zweig AS , Tyner C , et al. The UCSC genome browser database: 2019 update[J]. Nucleic Acids Res, 2019, 47 (D1): D853- D858.
doi: 10.1093/nar/gky1095
19 Hoffman MM , Ernst J , Wilder SP , et al. Integrative annotation of chromatin elements from ENCODE data[J]. Nucleic Acids Res, 2013, 41 (2): 827- 841.
doi: 10.1093/nar/gks1284
20 Hnisz D , Abraham BJ , Lee TI , et al. Super-enhancers in the control of cell identity and disease[J]. Cell, 2013, 155 (4): 934- 947.
doi: 10.1016/j.cell.2013.09.053
21 Finucane HK , Bulik-Sullivan B , Gusev A , et al. Partitioning heritability by functional annotation using genome-wide association summary statistics[J]. Nat Genet, 2015, 47 (11): 1228- 1235.
doi: 10.1038/ng.3404
22 Witte JS , Visscher PM , Wray NR . The contribution of genetic variants to disease depends on the ruler[J]. Nat Rev Genet, 2014, 15 (11): 765- 776.
doi: 10.1038/nrg3786
23 Ludwig KU , Böhmer AC , Bowes J , et al. Imputation of orofacial clefting data identifies novel risk loci and sheds light on the genetic background of cleft lip ± cleft palate and cleft palate only[J]. Hum Mol Genet, 2017, 26 (4): 829- 842.
24 Wood AR , Esko T , Yang J , et al. Defining the role of common variation in the genomic and biological architecture of adult human height[J]. Nat Genet, 2014, 46 (11): 1173- 1186.
doi: 10.1038/ng.3097
25 Locke AE , Kahali B , Berndt SI , et al. Genetic studies of body mass index yield new insights for obesity biology[J]. Nature, 2015, 518 (7538): 197- 206.
doi: 10.1038/nature14177
26 Pantelis C , Papadimitriou GN , Papiol S , et al. Biological insights from 108 schizophrenia-associated genetic loci[J]. Nature, 2014, 511 (7510): 421- 427.
doi: 10.1038/nature13595
27 Okada Y , Wu D , Trynka G , et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery[J]. Nature, 2014, 506 (7488): 376- 381.
doi: 10.1038/nature12873
28 Liu JZ , van Sommeren S , Huang H , et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations[J]. Nat Genet, 2015, 47 (9): 979- 986.
doi: 10.1038/ng.3359
29 Yu Y , Zuo X , He M , et al. Genome-wide analyses of non-syndromic cleft lip with palate identify 14 novel loci and genetic heterogeneity[J]. Nat Commun, 2017, 8, 14364.
doi: 10.1038/ncomms14364
30 Suazo J , Recabarren AS , Marín NR , et al. Association between IRF6 variants and nonsyndromic cleft lip with or without cleft palate in Chile[J]. Reprod Sci, 2020, 27 (10): 1857- 1862.
doi: 10.1007/s43032-020-00203-9
31 Zucchero TM , Cooper ME , Maher BS , et al. Interferon regulatory factor 6 (IRF6) gene variants and the risk of isolated cleft lip or palate[J]. N Engl J Med, 2004, 351 (8): 769- 780.
doi: 10.1056/NEJMoa032909
32 Rahimov F , Marazita ML , Visel A , et al. Disruption of an AP-2alpha binding site in an IRF6 enhancer is associated with cleft lip[J]. Nat Genet, 2008, 40 (11): 1341- 1347.
doi: 10.1038/ng.242
33 Morris VE , Hashmi SS , Zhu L , et al. Evidence for craniofacial enhancer variation underlying nonsyndromic cleft lip and palate[J]. Hum Genet, 2020, 139 (10): 1261- 1272.
doi: 10.1007/s00439-020-02169-9
34 Whyte WA , Orlando DA , Hnisz D , et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes[J]. Cell, 2013, 153 (2): 307- 319.
doi: 10.1016/j.cell.2013.03.035
35 Gröschel S , Sanders MA , Hoogenboezem R , et al. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia[J]. Cell, 2014, 157 (2): 369- 381.
doi: 10.1016/j.cell.2014.02.019
36 Visel A , Minovitsky S , Dubchak I , et al. VISTA enhancer browser: A database of tissue-specific human enhancers[J]. Nucleic Acids Res, 2007, 35 (Database issue): D88- D92.
37 Gao T , Qian J . EnhancerAtlas 2.0: An updated resource with enhancer annotation in 586 tissue/cell types across nine species[J]. Nucleic Acids Res, 2020, 48 (D1): D58- D64.
38 Evans LM , Tahmasbi R , Vrieze SI , et al. Comparison of methods that use whole genome data to estimate the heritability and genetic architecture of complex traits[J]. Nat Genet, 2018, 50 (5): 737- 745.
doi: 10.1038/s41588-018-0108-x
[1] Tianjiao HOU,Zhibo ZHOU,Zhuqing WANG,Mengying WANG,Siyue WANG,Hexiang PENG,Huangda GUO,Yixin LI,Hanyu ZHANG,Xueying QIN,Yiqun WU,Hongchen ZHENG,Jing LI,Tao WU,Hongping ZHU. Gene-gene/gene-environment interaction of transforming growth factor-β signaling pathway and the risk of non-syndromic oral clefts [J]. Journal of Peking University (Health Sciences), 2024, 56(3): 384-389.
[2] Meng-ying WANG,Wen-yong LI,Ren ZHOU,Si-yue WANG,Dong-jing LIU,Hong-chen ZHENG,Zhi-bo ZHOU,Hong-ping ZHU,Tao WU,Yong-hua HU. Association study between haplotypes of WNT signaling pathway genes and nonsyndromic oral clefts among Chinese Han populations [J]. Journal of Peking University (Health Sciences), 2022, 54(3): 394-399.
[3] Wen-yong LI,Meng-ying WANG,Ren ZHOU,Si-yue WANG,Hong-chen ZHENG,Hong-ping ZHU,Zhi-bo ZHOU,Tao WU,Hong WANG,Bing SHI. Exploring parent-of-origin effects for non-syndromic cleft lip with or without cleft palate on PTCH1, PTCH2, SHH, SMO genes in Chinese case-parent trios [J]. Journal of Peking University (Health Sciences), 2020, 52(5): 809-814.
[4] Ren ZHOU,Hong-chen ZHENG,Wen-yong LI,Meng-ying WANG,Si-yue WANG,Nan LI,Jing LI,Zhi-bo ZHOU,Tao WU,Hong-ping ZHU. Exploring the association between SPRY gene family and non-syndromic oral clefts among Chinese populations using data of a next-generation sequencing study [J]. Journal of Peking University(Health Sciences), 2019, 51(3): 564-570.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!