Journal of Peking University (Health Sciences) ›› 2021, Vol. 53 ›› Issue (1): 159-166. doi: 10.19723/j.issn.1671-167X.2021.01.024

Previous Articles     Next Articles

Hypoxia and inflammation are risk factors for acute myocardial injury in patients with coronavirus disease 2019

YANG Lin-cheng1,ZHANG Rui-tao1,GUO Li-jun1,XIAO Han1,ZU Ling-yun1,ZHANG You-yi1,CHENG Qin2,ZHAO Zhi-ling3,GE Qing-gang3,GAO Wei1,Δ()   

  1. 1. Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital & NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides & Key Laboratory of Molecular Cardiovascular Science, Ministry of Education & Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
    2. Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
    3. Department of Intensive Care Medicine, Peking University Third Hospital, Beijing 100191, China
  • Received:2020-08-14 Online:2021-02-18 Published:2021-02-07
  • Contact: Wei GAO E-mail:weigao@bjmu.edu.cn

RICH HTML

  

Abstract:

Objective: To investigate the risk factors for acute myocardial injury in coronavirus disease 2019 (COVID-19) patients.Methods: This is a retrospective analysis of a COVID-19 cohort, in which 149 confirmed COVID-19 patients enrolled were divided into the group of myocardial injury (19 cases) and the group of non-myocardial injury (130 cases). Myocardial injury was defined according to Fourth universal definition of myocardial infarction released by European Society of Cardiology (ESC) in 2018, that cardiac troponin (cTn) was above 99th percentile of the reference level. Clinical information and results of laboratory tests of the eligible patients were collected. Factors associated with myocardial injury in COVID-19 patients were evaluated.Results: Compared with the group of non-injury, the patients in the group of injury were older and had a larger proportion of severe or critical cases (P<0.05), higher respiratory rate and lower percutaneous oxygen saturation (SpO2) without oxygen therapy on admission (P<0.05). All inflammatory indexes except for tumor necrosis factor α (TNF-α) showed significant elevation in the patients of the group of injury (P<0.05). Analyzed by Spearman correlation test, we showed that the levels of circulatory cTnI were in positive correlation with the levels of high-sensitivity C-reactive protein (hs-CRP), ferritin, receptor of interleukin-2 (IL-2R), interleukin-6 (IL-6) and interleukin-8 (IL-8) (ρ>0, P<0.05). Lower SpO2 without oxygen therapy on admission (OR: 0.860, 95%CI: 0.779-0.949, P=0.003) and higher plasma IL-6 levels (OR: 1.068, 95%CI: 1.019-1.120, P=0.006) were independent risk factors for acute myocardial injury in the patients with COVID-19 by multivariate Logistic regression analyses.Conclusion: Hypoxic state and inflammation may play a key role in the pathogenesis of acute myocardial injury in COVID-19 patients.

Key words: Betacoronavirus, Acute myocardial injury, Interleukin-6, Inflammation

CLC Number: 

  • R542.2

Figure 1

Study flow diagram"

Table 1

Demographics and baseline characteristics of patients with COVID-19"

Items Myocardial injury (n=19) Non-myocardial injury (n=130) t/Z/χ2value P value
General information
Age/years, M (P25, P75) 68.0 (62.0, 77.0) 61.5 (50.0, 69.0) -2.377 0.017
Female, n(%) 10 (52.6) 66 (50.8) 0.023 1.000
Severe or critically severe cases, n(%) 18 (94.7) 72 (55.4) 10.733 0.001
Previous medical history, n(%)
Hypertension 13 (68.4) 44 (33.8) 8.390 0.005
Diabetes 4 (21.1) 15 (16.2) 0.285 0.528
Hyperlipidemia 2 (10.5) 4 (3.1) 2.380 0.169
Smoking history 4 (21.1) 13 (10.0) 2.004 0.236
Cerebrovascular disease 2 (10.5) 5 (3.8) 1.652 0.219
Vital signs on admission
Heart rate/(beat/min), x-±s 93.7±18.9 91.1±17.0 -0.626 0.532
Systolic pressure/mmHg, x-±s 131.8±26.5 132.4±19.2 0.092 0.928
Diastolic pressure/mmHg, x-±s 80.2±16.3 80.6±14.5 0.097 0.924
Respiratory rate/(time/min), M (P25, P75) 30.0 (21.0, 36.0) 21.0 (20.0, 24.0) -3.981 <0.001
SpO2/%, M (P25, P75) 92.0 (79.0, 96.5) 97.0 (94.0, 98.0) -2.978 0.003
Blood routine, M (P25, P75)
White blood cell/(×109/L) 10.10 (5.14, 13.4) 5.38 (4.39, 6.70) -3.062 0.002
Neutrophil/(×109/L) 7.88 (4.30, 12.58) 3.77 (2.66, 5.07) -3.588 <0.001
Lymphocyte/(×109/L) 0.58 (0.40, 1.01) 1.01 (0.69, 1.46) -3.700 <0.001
Scr/(μmol/L), x-±s 87.0±29.1 70.5±20.8 -2.811 0.006
Biomarkers of myocardial injury, M (P25, P75)
CK-MB/(μg/L) 2.90 (1.90, 6.30) 0.70(0.40,1.20) -4.843 <0.001
cTnI/(ng/L) 73.6 (49.5, 229.5) 4.6 (3.1, 8.7) -6.764 <0.001
NT-proBNP/(μg/L), M (P25, P75) 1 062.0 (373.0, 1 847.0) 121.0 (63.0, 248.0) -5.259 <0.001
D-dimer*/(mg/L), M (P25, P75) 2.56 (1.62, 5.56) 0.85 (0.48, 1.54) -3.966 <0.001
Treatment, n(%)
Glucocorticoid 9 (47.4) 26 (20.0) 6.909 0.009
Mechanical ventilation 9 (47.4) 5 (3.8) 36.885 <0.001
In-hospital death, n(%) 8 (42.1) 7 (5.4) 24.689 <0.001

Table 2

Comparison of cytokines, hs-CRP and ferritin"

Items Myocardial injury (n=19) Non-myocardial injury (n=130) Z value P value
hs-CRP/(mg/L) 89.40 (51.30, 139.80) 26.80 (4.95, 71.00) -3.500 <0.001
Ferritin/(μg/L) 1 097.90 (727.73, 2 106.40) 630.50 (358.75, 1 265.80) -2.671 0.008
IL-2R/(U/mL) 1 180.00 (642.00, 1 538.00) 658.00 (443.75, 973.25) -2.942 0.003
IL-6/(ng/L) 50.79 (19.62, 143.20) 19.51 (5.80, 44.98) -3.435 0.001
IL-8/(ng/L) 24.30 (12.80, 43.20) 13.70 (8.23, 24.15) -2.642 0.008
TNF-α/(ng/L) 10.30 (8.90, 13.70) 8.70 (6.30, 11.80) -1.684 0.092

Figure 2

Distribution and association of cTnI with inflammatory indexes Analyzed by Spearman correlation test, we show that levels of circulatory cardiac troponin I (cTnI) are in positive correlation (ρ>0, P<0.01) with levels of high-sensitivity C-reactive protein (hs-CRP, n=114), ferritin (n=113), receptor of interleukin-2 (IL-2R, n=114), interleukin-6 (IL-6, n=110) and interleukin-8 (IL-8, n=107). The values under level of detection were removed from the correlation test. Abbreviations as in Table 1 and 2."

Table 3

Logistic regression analysis of factors of myocardial injury"

Factors Univariate analysis Multivariate analysis (Enter) Multivariate analysis
(backward LR, last step)
OR (95%CI) P OR (95%CI) P value OR (95%CI) P value
Age (1-year-old) 1.060 (1.017-1.104) 0.006 1.071 (0.989-1.161) 0.093 1.085 (1.006-1.169) 0.034
Respiratory rate (1 per minute) 1.134 (1.047-1.229) 0.002 1.028 (0.963-1.096) 0.408
SpO2 0.859 (0.794-0.929) <0.001 0.874 (0.780-0.979) 0.020 0.860 (0.779-0.949) 0.003
Hypertension (No vs. Yes) 0.236 (0.084-0.664) 0.006 0.263 (0.047-1.458) 0.126 0.220 (0.044-1.097) 0.065
SCr (1 μmol/L) 1.026 (1.006-1.046) 0.011 1.010 (0.981-1.040) 0.507
hs-CRP (10 mg/L) 1.131 (1.053-1.216) 0.001 0.999 (0.871-1.145) 0.984
Ferritin (100 μg/L) 1.056 (1.015-1.098) 0.007 1.015 (0.947-1.088) 0.673
IL-2R (10 U/mL) 1.011 (1.003-1.018) 0.005 1.002 (0.988-1.016) 0.791
IL-6 (10 ng/L) 1.055 (1.008-1.015) 0.020 1.056 (1.005-1.111) 0.031 1.068 (1.019-1.120) 0.006
IL-8 (10 ng/L) 1.203 (1.033-1.401) 0.017 1.043 (0.836-1.302) 0.708

Figure 3

The ROC curve of predicting acute myocardial injury of COVID-19 patients Area under ROC of SpO2 is 0.721 (95%CI: 0.561-0.882, P =0.003), and area under ROC of IL-6 is 0.746 (95%CI: 0.636-0.855, P=0.001). Taking both of the two factors into consideration promotes predictive value for myocardial injury of COVID-19 patients. Abbreviations as in Table 1 and 2."

[1] Xu X, Chen P, Wang J, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission[J]. Sci China Life Sci, 2020,63(3):457-460.
doi: 10.1007/s11427-020-1637-5 pmid: 32009228
[2] Lu R, Zhao X, Li J, et al. Genomic characterisation and epide-miology of 2019 novel coronavirus: Implications for virus origins and receptor binding[J]. Lancet, 2020,395(10224):565-574.
doi: 10.1016/S0140-6736(20)30251-8 pmid: 32007145
[3] Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study[J]. Lancet, 2020,395(10223):507-513.
doi: 10.1016/S0140-6736(20)30211-7 pmid: 32007143
[4] Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020,395(10223):497-506.
doi: 10.1016/S0140-6736(20)30183-5 pmid: 31986264
[5] Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China[J]. JAMA, 2020,323(11):1061-1069.
doi: 10.1001/jama.2020.1585 pmid: 32031570
[6] 魏之瑶, 钱海燕. 新型冠状病毒肺炎患者的心肌损伤表现[J]. 中华心血管病杂志, 2020,48(6):439-442.
[7] Fourth universal definition of myocardial infarction (2018)[J]. Rev Esp Cardiol (Engl Ed), 2019,72(1):72.
[8] 陈晨, 陈琛, 严江涛, 等. 新型冠状病毒肺炎危重型患者心肌损伤及患有心血管基础疾病的情况分析[J]. 中华心血管病杂志, 2020,48(7):567-571.
[9] Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China[J]. N Engl J Med, 2020,382(18):1708-1720.
doi: 10.1056/NEJMoa2002032 pmid: 32109013
[10] Koong AC, Chen EY, Giaccia AJ. Hypoxia causes the activation of nuclear factor kappa B through the phosphorylation of I kappa B alpha on tyrosine residues[J]. Cancer Res, 1994,54(6):1425-1430.
[11] Lum H, Roebuck KA. Oxidant stress and endothelial cell dysfunction[J]. Am J Physiol Cell Physiol, 2001,280(4):C719-C741.
[12] Csiszar A, Wang M, Lakatta EG, et al. Inflammation and endothelial dysfunction during aging: role of NF-kappaB[J]. J Appl Physiol (1985), 2008,105(4):1333-1341.
[13] Iida T, Mine S, Fujimoto H, et al. Hypoxia-inducible factor-1alpha induces cell cycle arrest of endothelial cells[J]. Genes Cells, 2002,7(2):143-149.
[14] Aoki M, Nata T, Morishita R, et al. Endothelial apoptosis induced by oxidative stress through activation of NF-kappaB: antiapoptotic effect of antioxidant agents on endothelial cells[J]. Hypertension, 2001,38(1):48-55.
[15] Chen Y, Liu Y, Dorn GW 2nd. Mitochondrial fusion is essential for organelle function and cardiac homeostasis[J]. Circ Res, 2011,109(12):1327-1331.
[16] Chen Q, Moghaddas S, Hoppel CL, et al. Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria[J]. Am J Physiol Cell Physiol, 2008,294(2):C460-C466.
[17] Chiong M, Wang ZV, Pedrozo Z, et al. Cardiomyocyte death: Mechanisms and translational implications[J]. Cell Death Dis, 2011,2(12):e244.
[18] Nunez C, Victor VM, Marti M, et al. Role of endothelial nitric oxide in pulmonary and systemic arteries during hypoxia[J]. Nitric Oxide, 2014,37:17-27.
[19] Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study[J]. Lancet Respir Med, 2020,8(5):475-481.
[20] Hui H, Zhang YQ, Yang X, et al. Clinical and radiographic features of cardiac injury in patients with 2019 novel coronavirus pneumonia[J]. MedRxiv, 2020, 2020.02.24.20027052.
[21] Channappanavar R, Perlman S. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology[J]. Semin Immunopathol, 2017,39(5):529-539.
doi: 10.1007/s00281-017-0629-x pmid: 28466096
[22] Neumann FJ, Ott I, Marx N, et al. Effect of human recombinant interleukin-6 and interleukin-8 on monocyte procoagulant activity[J]. Arterioscler Thromb Vasc Biol, 1997,17(12):3399-3405.
[23] Tanaka T, Narazaki M, Kishimoto T. Immunotherapeutic implications of IL-6 blockade for cytokine storm[J]. Immunotherapy, 2016,8(8):959-970.
doi: 10.2217/imt-2016-0020 pmid: 27381687
[24] Ding Y, Wang H, Shen H, et al. The clinical pathology of severe acute respiratory syndrome (SARS): A report from China[J]. J Pathol, 2003,200(3):282-289.
pmid: 12845623
[25] 国家卫生健康委员会. 新型冠状病毒诊疗方案(试行第七版)[EB]. (2020-03-03)[2020-04-15]. http://www.nhc.gov.cn/yzygj/s7653p/202003/46c9294a7dfe4cef80dc7f5912eb1989/files/ce3e6945832a438eaae415350a8ce964.pdf.
[26] Watts ER, Walmsley SR. Inflammation and hypoxia: HIF and PHD isoform selectivity[J]. Trends Mol Med, 2019,25(1):33-46.
doi: 10.1016/j.molmed.2018.10.006 pmid: 30442494
[27] Campbell EL, Bruyninckx WJ, Kelly CJ, et al. Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation[J]. Immunity, 2014,40(1):66-77.
[1] Chang SHU,Ye HAN,Yuzhe SUN,Zaimu YANG,Jianxia HOU. Changes of parameters associated with anemia of inflammation in patients with stage Ⅲ periodontitis before and after periodontal initial therapy [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 45-50.
[2] Chen-guang ZHANG,Xu-yan CHEN,Sheng WU,Li-li FENG,Yan WANG,Yu CHEN,Min DUAN,Ke WANG,Lin-lin SONG. Internal carotid artery pseudoaneurysm caused by parapharyngeal abscess: A case report [J]. Journal of Peking University (Health Sciences), 2023, 55(6): 1135-1138.
[3] Xiu-rui LIANG,Xue-chun SHAN,Jing GUAN,Rui ZHANG,Jing YANG,Yi ZHANG,Jia-qi JIN,Yu-xin ZHANG,Fan XU,Ji-hua FU. Role of hyperglycemia-induced 5-hydroxytryptamine degradation of hepatic stellate cells in hepatic inflammation and fibrosis induced by type 2 diabetes mellitus [J]. Journal of Peking University (Health Sciences), 2022, 54(6): 1141-1150.
[4] CHEN Huai-an,LIU Shuo,LI Xiu-jun,WANG Zhe,ZHANG Chao,LI Feng-qi,MIAO Wen-long. Clinical value of inflammatory biomarkers in predicting prognosis of patients with ureteral urothelial carcinoma [J]. Journal of Peking University (Health Sciences), 2021, 53(2): 302-307.
[5] Yan XUAN,Yu CAI,Xiao-xuan WANG,Qiao SHI,Li-xin QIU,Qing-xian LUAN. Effect of Porphyromonas gingivalis infection on atherosclerosis in apolipoprotein-E knockout mice [J]. Journal of Peking University (Health Sciences), 2020, 52(4): 743-749.
[6] Li-ping DUAN,Zhao-xia ZHENG,Yu-hui ZHANG,Jie DONG. Association of malnutrition-inflammation-cardiovascular disease with cognitive deterioration in peritoneal dialysis patients [J]. Journal of Peking University(Health Sciences), 2019, 51(3): 510-518.
[7] Ping WANG,Jing SONG,Xiang-yu FANG,Xin LI,Xu LIU,Yuan JIA,Zhan-guo LI,Fan-lei HU. Role of erythroblast-like Ter cells in the pathogenesis of collagen-induced arthritis [J]. Journal of Peking University(Health Sciences), 2019, 51(3): 445-450.
[8] GAI Xiao-yan, CHANG Chun, WANG Juan, LIANG Ying, LI Mei-jiao, SUN Yong-chang,HE Bei, YAO Wan-zhen. Airway inflammation and small airway wall remodeling in neutrophilic asthma [J]. Journal of Peking University(Health Sciences), 2018, 50(4): 645-650.
[9] ZHU Hui, ZHU Rong, DENG Zhao-da, FENG Yu-chen, SHEN Hai-li. Analgesic effects of ionotropic glutamate receptor antagonists MK-801 and NBQX on collagen-induced arthritis rats [J]. Journal of Peking University(Health Sciences), 2016, 48(6): 977-981.
[10] CHEN Xiao-mei, LI Fu-qiang, YAN Su, WU Xiao-cui, TANG Cui-lan. Nicotine alleviates the liver inflammation of non-alcoholic steatohepatitis induced by high-fat and high-fructose in mice [J]. Journal of Peking University(Health Sciences), 2016, 48(5): 777-782.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!