Journal of Peking University (Health Sciences) ›› 2023, Vol. 55 ›› Issue (4): 606-611. doi: 10.19723/j.issn.1671-167X.2023.04.006

Previous Articles     Next Articles

Association between depression and chronic diseases among middle-aged and older Chinese adults

Chun-su ZHU1,2,Zhi-wei LIAN3,Yi-min CUI1,2,*()   

  1. 1. Department of Pharmacy, Peking University First Hospital, Beijing 100034, China
    2. Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
    3. Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou 350014, China
  • Received:2020-08-06 Online:2023-08-18 Published:2023-08-03
  • Contact: Yi-min CUI E-mail:cui.pharm@pkufh.com

RICH HTML

  

Abstract:

Objective: To examine the association between depressive symptoms and chronic diseases among middle-aged and older Chinese adults within a national investigation. Methods: Data used in current analysis were obtained from a nationally representative, cross-sectional population-based survey of China health and retirement longitudinal study, which were conducted in 2011 using four-stage probability-proportional-to-size sampling methods. A total of 10 420 participants who were aged 45 years and above from 28 provinces in mainland China were included. Information on demographic characteristics (e.g., age, gender, education level), lifestyle factors (e.g., smoking status and drinking frequency) and chronic diseases (e.g., hypertension, diabetes, and stroke) were collected by well-trained interviewers at the interviewees' homes using a standardized questionnaire. Depressive symptoms were measured using the 10-item version of the center for epidemiological studies depression scale (CESD-10, which was a widely used standard tool in Chinese population, and elevated depressive symptoms were defined by a cut-off ≥10. Multivariate Logistic regression analysis was carried out to assess the association between depressive symptoms and chronic diseases (including hypertension, diabetes, heart disease, dyslipidemia and stroke), adjusting for age, gender, education level, marital status, ethnicity, place of residence, bady mass index (BMI) and other potential confounding factors. Results: Among the 10 420 participants, the mean age was (59.2±9.4) years, and 48.2% of them were men. There were 3 900 (37.4%) participants who had a depression rating score of 10 or greater, indicative of elevated depressive symptoms. The results of multivariate Logistic regression analysis demonstrated that diabetes (OR=1.230, 95%CI: 1.080-1.401), hypertension (OR=1.335, 95%CI: 1.205-1.480), heart disease (OR=1.953, 95%CI: 1.711-2.229), and stroke (OR=2.269, 95%CI: 1.704-3.020) were significantly associated with depressive symptoms (P < 0.05), after full adjustment of age, gender, education level, marital status, ethnicity, residency and other potential confounders. While no significant relationship was found between dyslipidemia and depressive symptoms (P>0.05). The prevalence of elevated depressive symptoms increased parallel with the number of chronic diseases (Ptrend < 0.001). Conclusion: Depressive symptoms were significantly associated with chronic diseases (including diabetes, hypertension, heart disease, and stroke), which suggests that psychological factors, such as depressive symptoms should be taken into consideration in the prevention and control of chronic diseases.

Key words: Middle-aged and older population, Depressive symptoms, Chronic diseases, Cross-sectional study

CLC Number: 

  • R181.3

Table 1

Characteristics by depressive-symptom status of mid-aged population"

Characteristics Full sample(n=10 420) Depression disorderP value
No (n=6 520) Yes (n=3 900)
Age/years, $\bar x \pm s$ 59.2±9.4 58.7±9.3 60.0±9.4 <0.001
Gender, n (%) <0.001
   Male 5 018 (48.2) 3 484 (53.4) 1 534 (39.3)
   Female 5 402 (51.8) 3 036 (46.6) 2 366 (60.7)
Residence, n (%) <0.001
   Urban 3 675 (35.3) 2 554 (39.2) 1 121 (28.7)
   Rural 6 745 (64.7) 3 966 (60.8) 2 779 (71.3)
Education, n (%) <0.001
   Primary school and below 7 128 (68.4) 4 073 (62.5) 3 055 (78.3)
   Middle school 2 182 (20.9) 1 560 (23.9) 622 (15.9)
   High school 940 (9.0) 741 (11.4) 199 (5.1)
   Above high school 170 (1.6) 146 (2.2) 24 (0.6)
Ethnicity, n (%) 0.275
   Han 9 971 (95.7) 6 250 (95.9) 3 721 (95.4)
   Others 449 (4.3) 270 (4.1) 179 (4.6)
Marital status, n (%) <0.001
   Married 9 159 (87.9) 5 903 (90.5) 3 256 (83.5)
   Separated or divorced or never married 209 (2.0) 92 (1.4) 117 (3.0)
   Widowed 1 052 (10.1) 525 (8.1) 527 (13.5)
BMI /(kg/m2),$\bar x \pm s$ 23.5±3.9 23.8±4.0 23.1±3.8 <0.001
Sleep duration, n (%) <0.001
   <6 h 3 051 (29.3) 1 343 (20.6) 1 708 (43.8)
   6-8 h 6 519 (62.6) 4 596 (70.5) 1 923 (49.3)
   ≥8 h 850 (8.2) 581 (8.9) 269 (6.9)
Smoking, n (%) <0.001
   Current 3 252 (31.2) 2162 (33.2) 1 090 (27.9)
   Never 6 212 (59.6) 3707 (56.9) 2 505 (64.2)
   Past 956 (9.2) 651 (10.0) 305 (7.8)
Alcohol use, n (%) <0.001
   Never 6 968 (66.9) 4 139 (63.5) 2 829 (72.5)
   Less than once a month 825 (7.9) 551 (8.5) 274 (7.0)
   At least once a month 2 627 (25.2) 1 830 (28.1) 797 (20.4)

Table 2

Chronic disease by depressive-symptom status of mid-aged population"

Characteristics Full sample(n=10 420) Depression disorderP value OR
No (n=6 520) Yes (n=3 900)
Diabetes, n (%) 0.049
      No 9 179 (88.1) 5 775 (88.6) 3 404 (87.3) 1 (ref)
      Yes 1 241 (11.9) 745 (11.4) 496 (12.7) 1.130 (1.001-1.275)
Hypertension, n (%) <0.001
      No 7 935 (76.2) 5 067 (77.7) 2 868 (73.5) 1(ref)
      Yes 2 485 (23.8) 1 453 (22.3) 1 032 (26.5) 1.255 (1.145-1.376)
Heart disease, n (%) <0.001
   No 9 234 (88.6) 5 941 (91.9) 3 293 (84.4) 1(ref)
   Yes 1 186 (11.4) 579 (8.9) 607 (15.6) 1.891 (1.675-2.136)
Stroke, n (%) <0.001
   No 10 197 (97.9) 6 420 (98.5) 3 777 (96.8) 1(ref)
   Yes 223 (2.1) 100 (1.5) 123 (3.2) 2.091 (1.601-2.730)
Dyslipidemia, n (%) 0.307
   No 6 915 (66.4) 4 303 (66.0) 2 612 (67.0) 1(ref)
   Yes 3 505 (33.6) 2 217 (34.0) 1 288 (33.0) 0.957 (0.880-1.041)
Number of comorbid chronic disease <0.001
   0 4 898 (47.0) 3 178 (48.7) 1 720 (44.1) 1(ref)
   1 3 284 (31.5) 2 049 (31.4) 1 235 (31.7) 1.114 (1.016-1.221)
   2 1 518 (14.6) 914 (14.0) 604 (15.5) 1.221 (1.085-1.374)
   ≥3 720 (6.9) 379 (5.8) 341 (8.7) 1.662 (1.420-1.946)

Table 3

Model adjusted association between depressive symptoms and chronic diseases"

Items Model 1 Model 2
Diabetes
   No 1 (ref) 1 (ref)
   Yes 1.097 (0.970-1.241) 1.230 (1.080-1.401)
Hypertension
   No 1 (ref) 1 (ref)
   Yes 1.158 (1.054-1.272) 1.335 (1.205-1.480)
Heart disease
   No 1 (ref) 1 (ref)
   Yes 1.735 (1.533-1.963) 1.953 (1.711-2.229)
Stroke
   No 1 (ref) 1 (ref)
   Yes 2.031 (1.549-5.661) 2.269 (1.704-3.020)
Dyslipidemia
   No 1 (ref) 1 (ref)
   Yes 0.930 (0.854-1.013) 1.025 (0.935-1.123)
Number of comorbid chronic disease
   0 1 (ref) 1 (ref)
   1 1.070 (0.974-1.174) 1.167 (1.057-1.288)
   2 1.113 (0.986-1.256) 1.335 (1.171-1.523)
   ≥3 1.518 (1.293-1.781) 2.052 (1.721-2.447)
   Ptrend <0.001 <0.001

Table 4

Age subgroup analysis on association between depressive symptoms and chronic diseases"

Items 45-59 60-74 ≥75
Diabetes
   No 1 (ref) 1 (ref) 1 (ref)
   Yes 1.182 (0.980-1.425) 1.242 (1.018-1.515) 1.434 (0.891-2.309)
Hypertension
   No 1 (ref) 1(ref) 1 (ref)
   Yes 1.434 (1.229-1.672) 1.269 (1.089-1.479) 1.206 (0.852-1.707)
Heart disease
   No 1 (ref) 1(ref) 1 (ref)
   Yes 2.066 (1.689-2.528) 1.902(1.568-2.306) 1.943 (1.226-3.079)
Stroke
   No 1 (ref) 1 (ref) 1 (ref)
   Yes 2.627 (1.640-206) 2.234 (1.492-3.345) 1.679 (0.718-3.927)
Dyslipidemia
   No 1 (ref) 1 (ref) 1 (ref)
   Yes 1.057 (0.931-1.200) 0.970 (0.839-1.121) 1.055 (0.739-1.507)
1 Depression and Other Common Mental Disorders Global Health Estimates: 2017[EB/OL]. [2020-07-01]. https://apps.who.int/iris/bitstream/handle/10665/254610/WHO-MSD-MER-2017.2-eng.pdf;jsessionid=AF90F1082645C497062D5FD9650888CE?sequence=1.
2 Malhi GS , Mann JJ . Depression[J]. Lancet, 2018, 392 (10161): 2299- 2312.
doi: 10.1016/S0140-6736(18)31948-2
3 Huang Y , Wang Y , Wang H , et al. Prevalence of mental disorders in China: A cross-sectional epidemiological study[J]. Lancet Psychiatry, 2019, 6 (3): 211- 224.
doi: 10.1016/S2215-0366(18)30511-X
4 Pan A , Keum N , Okereke OI , et al. Bidirectional association between depression and metabolic syndrome: A systematic review and meta-analysis of epidemiological studies[J]. Diabetes Care, 2012, 35 (5): 1171- 1180.
doi: 10.2337/dc11-2055
5 Clarke DM , Currie KC . Depression, anxiety and their relationship with chronic diseases: A review of the epidemiology, risk and treatment evidence[J]. Med J Aust, 2009, 190 (Suppl 7): S54- S60.
6 Dickens C , McGowan L , Clark-Carter D , et al. Depression in rheumatoid arthritis: A systematic review of the literature with meta-analysis[J]. Psychosom Med, 2002, 64 (1): 52- 60.
doi: 10.1097/00006842-200201000-00008
7 《中国脑率中防治报告》编写组. 《中国脑卒中防治报告2019》概要[J]. 中国脑血管病杂志, 2020, 17 (5): 272- 281.
doi: 10.3969/j.issn.1672-5921.2020.05.008
8 张啸飞, 胡大一, 丁荣晶, 等. 中国心脑血管疾病死亡现况及流行趋势[J]. 中华高血压杂志, 2012, 20 (6): 600.
doi: 10.16439/j.cnki.1673-7245.2012.06.032
9 Zhao Y , Hu Y , Smith JP , et al. Cohort profile: The China health and retirement longitudinal study (CHARLS)[J]. Int J Epidemiol, 2014, 43 (1): 61- 68.
doi: 10.1093/ije/dys203
10 中国健康与养老追踪调查: 全国基线报告: 2019[EB/OL]. [2020-07-01]. http://charls.pku.edu.cn/wd/yjbg1.htm.
11 Chen H , Mui AC . Factorial validity of the center for epidemiologic studies depression scale short form in older population in China[J]. Int Psychogeriatr, 2014, 26 (1): 49- 57.
doi: 10.1017/S1041610213001701
12 许海燕, 顼志敏, 陆宗良. 中国成人血脂异常防治指南(2007)概要与解读[J]. 中华老年心脑血管病杂志, 2008, 10 (3): 238- 240.
doi: 10.3969/j.issn.1009-0126.2008.03.029
13 Lotfaliany M , Bowe SJ , Kowal P , et al. Depression and chronic diseases: Co-occurrence and communality of risk factors[J]. J Affect Disord, 2018, 241, 461- 468.
doi: 10.1016/j.jad.2018.08.011
14 余灿清, 陈怡平, 吕筠, 等. 中国30~79岁成人抑郁障碍与冠心病和脑卒中的关联[J]. 北京大学学报(医学版), 2016, 48 (3): 465- 471.
doi: 10.3969/j.issn.1671-167X.2016.03.016
15 Péquignot R , Dufouil C , Prugger C , et al. High level of depressive symptoms at repeated study visits and risk of coronary heart disease and stroke over 10 years in older adults: The three-city study[J]. J Am Geriatr Soc, 2016, 64 (1): 118- 125.
doi: 10.1111/jgs.13872
16 Dong JY , Zhang YH , Tong J , et al. Depression and risk of stroke: A meta-analysis of prospective studies[J]. Stroke, 2012, 43 (1): 32- 37.
doi: 10.1161/STROKEAHA.111.630871
17 Wang Z , Yang H , Guo Z , et al. Socio-demographic characteristics and co-occurrence of depressive symptoms with chronic diseases among older adults in China: The China longitudinal ageing social survey[J]. BMC Psychiatry, 2019, 19 (1): 310.
doi: 10.1186/s12888-019-2305-2
18 Vancampfort D , Correll CU , Wampers M , et al. Metabolic syndrome and metabolic abnormalities in patients with major depressive disorder: A meta-analysis of prevalences and moderating variables[J]. Psychol Med, 2014, 44 (10): 2017- 2028.
doi: 10.1017/S0033291713002778
19 Ancelin ML , Carrière I , Boulenger JP , et al. Gender and genotype modulation of the association between lipid levels and depressive symptomatology in community-dwelling elderly (the ESPRIT study)[J]. Biol Psychiatry, 2010, 68 (2): 125- 132.
doi: 10.1016/j.biopsych.2010.04.011
20 Anda RF , Williamson DF , Escobedo LG , et al. Depression and the dynamics of smoking. A national perspective[J]. JAMA, 1990, 264 (12): 1541- 1545.
doi: 10.1001/jama.1990.03450120053028
21 Penninx BW , van Tilburg T , Boeke AJ , et al. Effects of social support and personal coping resources on depressive symptoms: Different for various chronic diseases[J]. Health Psychol, 1998, 17 (6): 551- 558.
doi: 10.1037/0278-6133.17.6.551
22 DiMatteo MR , Lepper HS , Croghan TW . Depression is a risk factor for noncompliance with medical treatment: Meta-analysis of the effects of anxiety and depression on patient adherence[J]. Arch Intern Med, 2000, 160 (14): 2101- 2107.
doi: 10.1001/archinte.160.14.2101
23 Penninx BW . Depression and cardiovascular disease: Epidemiolo gical evidence on their linking mechanisms[J]. Neurosci Biobehav Rev, 2017, 74 (Pt B): 277- 286.
[1] Qingxin ZHOU,Qingqing YANG,Shuyuan SHI,Pei LI,Feng SUN. Association between serum uric acid and airflow obstruction based on the health-checkup population [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 693-699.
[2] Zi-wei ZHANG,Yu-meng HUA,Ai-ping LIU. Joint association of depression symptoms and 10-year risk of ischemic cardiovascular disease with the cardiovascular disease in middle-aged and elderly people in China [J]. Journal of Peking University (Health Sciences), 2023, 55(3): 465-470.
[3] Ting WANG,Qiao-sheng LI,Hao-ran LIU,Wei-yan JIAN. Urban-rural differentials in the relationship between personality traits and changes in depressive symptoms [J]. Journal of Peking University (Health Sciences), 2023, 55(3): 385-391.
[4] Guang-qi LIU,Yuan-jie PANG,Jiang WU,Min LV,Meng-ke YU,Yu-tong LI,Yang-mu HUANG. Trend analysis of influenza vaccination among hospitalized elderly people in Beijing, 2013-2019 [J]. Journal of Peking University (Health Sciences), 2022, 54(3): 505-510.
[5] Yu-hui LI,Bo SU,Fu-an LIN,Ya-nan FEI,Xiao-xia YU,Wen-qiang FAN,Hai-ying CHEN,Xue-wu ZHANG,Yuan JIA. Cross-sectional study on clinic behavior and therapeutic status of patients with psoriatic arthritis in multi-center [J]. Journal of Peking University(Health Sciences), 2019, 51(6): 1014-1018.
[6] Xiao-ying ZHANG,Jia-jing PENG,Chuan-hui LIU,Xiao-yan CAI,Jiang-lin ZHANG,Yi-fang MEI,Hong-tao JIN,Xiao-fei WANG,Hong MO,Zhan-guo LI. A multi-center cross-sectional survey of medicine application in patients with osteoarthritis in China [J]. Journal of Peking University(Health Sciences), 2018, 50(6): 1044-1048.
[7] CHENG Yin-chu, PAN Yong-ping, ZHANG Yang,PAN Yu-ting, DING Cheng-yi, CAO Yu, ZHUO Lin, FANG Ren-fei, GAO Ai-yu, GUO Jing, LI Ai-jun, FU Qiang, MA Jun, ZHAN Si-yan. Investigation of the cognition and behavior on drug safety in Beijing middle school students [J]. Journal of Peking University(Health Sciences), 2017, 49(6): 1038-1043.
[8] LIU Miao, HE Yao, JIANG Bin, WU Lei, WANG Jian-Hua, YANG Shan-Shan, WANG Yi-Yan, LI Xiao-Ying. Relationship between brachial-ankle pulse wave velocity and metabolic syndrome among the elderly in a Beijing community and the gender difference [J]. Journal of Peking University(Health Sciences), 2014, 46(3): 429-434.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!