Journal of Peking University (Health Sciences) ›› 2025, Vol. 57 ›› Issue (6): 1124-1131. doi: 10.19723/j.issn.1671-167X.2025.06.016

Previous Articles     Next Articles

A follow-up study on the physical and motor development of premature infants with small for gestational age within 2 years after birth

Ping ZHENG1,2, Kunhong LIN1, Mengyuan LIU1, Xuyan ZHAO1, Yangxin XIAO1, Yan XING1,*()   

  1. 1. Department of Pediatrics, Peking University Third Hospital, Beijing 100191, China
    2. Qingdao Chengyang People's Hospital, Qingdao 266109, Shandong, China
  • Received:2025-08-11 Online:2025-12-18 Published:2025-11-07
  • Contact: Yan XING
  • Supported by:
    Clinical Cohort Construction Project of Peking University Third Hospital(BYSYDL2022008)

RICH HTML

  

Abstract:

Objective: To investigate the physical and motor development of preterm small for gestational age infant (SGA) within 2 years after birth. Methods: SGA born in Peking University Third Hospital from January 1, 2018 to December 31, 2022 and followed up regularly in the Center for Child Health and Deve-lopment were selected as study subjects. They were divided into preterm SGA group and full-term SGA group. Length, weight, head circumference, Peabody motor development score, vitamin A and D, bone mineral density and feeding status of SGA 0-3, 3-6, 6-10, 10-16, 16-21, 21-27 months after birth were collected through the electronic child health care follow-up system. The preterm infants were calculated according to the corrected gestational age. SPSS 25.0 statistical software was used to analyze the data. Results: A total of 158 SGA completed the regular follow-up, including 87 preterm SGA and 71 full-term SGA. The birth length, weight and head circumference of the two groups were statistically significant (all P < 0.05). The body weight of preterm SGA caught up faster 0-3 months after birth, and the head circumference of preterm SGA was higher than that of full-term SGA 0-3 months [(38.18±2.14) cm vs. (37.12±1.66) cm] and 6-10 months [(43.04±1.54) cm vs. (42.35±1.70) cm] after birth. The differences were statistically significant (all P < 0.05). The scores of gross motor, fine motor and total motor development 3-6 and 6-10 months after birth were significantly higher in preterm SGA than in full-term SGA (all P < 0.05). Breastfeeding 0-3 months of age and 3-6 months of age was significantly associated with catch-up growth in preterm SGA (P < 0.05). There were no significant differences in vitamins A and D and bone mineral density between the two groups. Conclusion: In the first year after birth, the weight and head circumference of preterm SGA increase faster than those of full-term SGA, and the motor development of preterm SGA is better than that of full-term SGA. After the first year of life, the physical indicators and motor development of the two groups tend to be consistent. Breastfeeding is the preferred feeding mode for preterm SGA, which promotes rapid catch-up growth in the early stage. The absence of maternal diabetes during pregnancy is also one of the positive factors for the occurrence of catch-up growth in SGA.

Key words: Small for gestational age infant, Physical development, Motor development, Weight gain, Breastfeeding

CLC Number: 

  • R722

Table 1

Comparison of weight, body length and head circumference between preterm SGA and full-term SGA"

Months of age Group Weight/kg Body length/cm Head circumference/cm
n $\bar x \pm s$ n $\bar x \pm s$ n $\bar x \pm s$
At the moment of birth Full-term 71 2.28±0.30 71 45.70±2.31 41 32.26±1.56
Preterm 87 1.47±0.41* 87 39.37±4.39* 55 28.72±2.77*
0-3 Full-term 39 4.30±0.86 39 54.49±3.18 38 37.12±1.66
Preterm 81 4.81±1.15* 81 55.54±4.27 81 38.18±2.14*
3-6 Full-term 64 6.39±0.98 64 62.54±3.01 63 40.58±1.60
Preterm 73 6.48±0.97 73 62.34±3.12 73 41.00±1.61
6-10 Full-term 58 7.45±1.06 58 66.65±2.86 57 42.35±1.70
Preterm 76 7.53±1.07 76 67.37±2.68 74 43.04±1.54*
10-16 Full-term 53 8.79±1.15 52 72.82±3.23 52 44.76±1.42
Preterm 59 8.82±1.18 59 73.84±2.87 58 44.83±1.59
16-21 Full-term 26 9.78±1.27 26 78.76±3.64 24 45.78±1.36
Preterm 44 9.64±1.10 44 78.93±3.44 44 45.65±2.58
21-27 Full-term 13 11.23±1.86 13 85.63±6.23 12 47.39±0.99
Preterm 32 10.89±1.26 31 85.87±4.31 31 46.68±1.67

Table 2

Comparison of catch-up growth of preterm SGA and full-term SGA"

Months of age Groups Catch-up group,n(%) No catch-up group, n(%) Statistics P
0-3 Full-term 20 (51.3) 19 (48.7) χ2=3.610 0.057
Preterm 56 (69.1) 25 (30.9)
3-6 Full-term 46 (71.9) 18 (28.1) χ2=0.067 0.796
Preterm 51 (69.9) 22 (30.1)
6-10 Full-term 45 (77.6) 13 (22.4) χ2=1.032 0.310
Preterm 53 (69.7) 23 (30.3)
10-16 Full-term 45 (84.9) 8 (15.1) χ2=3.031 0.082
Preterm 42 (71.2) 17 (28.8)
16-21 Full-term 19 (73.1) 7 (26.9) χ2=0.388 0.533
Preterm 35 (79.5) 9 (20.5)
21-27 Full-term 11 (84.6) 2 (15.4) 0.696a
Preterm 23 (71.9) 9 (28.1)

Table 3

Bone mineral density changes of preterm SGA and full-term SGA"

Months of age Groups n Bone mineral density (Z value),$\bar x \pm s$ t P
0-3 Full-term 31 -1.510±0.995 2.123 0.928
Preterm 68 -1.980±1.050
3-6 Full-term 59 -1.306±1.220 0.760 0.699
Preterm 65 -1.465±1.098
6-10 Full-term 51 -0.792±0.918 0.495 0.532
Preterm 57 -0.875±0.830
10-16 Full-term 47 0.034±0.936 -0.927 0.832
Preterm 50 0.210±0.932
16-21 Full-term 21 0.367±1.075 -0.236 0.843
Preterm 29 0.438±1.037
21-27 Full-term 11 0.552±1.088 0.269 0.961
Preterm 26 0.438±1.214

Table 4

Comparison of motor development of preterm SGA and full-term SGA"

Months of age Groups n GMQ, $\bar x \pm s$ FMQ, $\bar x \pm s$ TDQ, $\bar x \pm s$
0-3 Full-term 10 99.50±5.68 102.00±8.08 101.60±6.62
Preterm 57 101.26±5.64 100.60±6.04 100.89±5.57
3-6 Full-term 26 96.00±5.00 97.58±4.57 96.65±3.57
Preterm 62 99.79±4.83* 101.35±4.63* 100.31±4.69*
6-10 Full-term 24 96.88±4.91 97.38±4.83 96.60±3.53
Preterm 45 100.16±5.90* 100.60±5.30* 100.16±5.13*
10-16 Full-term 18 97.06±7.47 100.22±8.18 97.84±7.94
Preterm 33 96.09±6.62 102.00±8.51 98.24±7.11
16-21 Full-term 9 100.22±9.44 99.67±9.90 100.47±7.92
Preterm 21 97.71±7.89 104.00±4.87 100.33±5.96
21-27 Full-term 5 99.60±4.78 97.80±12.78 100.00±4.79
Preterm 7 97.86±5.05 100.43±2.70 98.71±2.29

Table 5

Relationship between catch-up growth and feeding patterns in preterm SGA infants"

Months of age Feeding patterns Catch-up, n(%) No catch-up, n(%) P aOR 95%CI
0-3 Breast milk 19 (86.4) 3 (13.6) 0.045 6.29 1.04-37.8
Formula milk 7 (53.8) 6 (46.2) 0.965 1.04 0.18-6.03
Mixed 20 (80.0) 5 (20.0) 0.149 3.19 0.66-15.43
3-6 Breast milk 15 (83.3) 3 (16.7) 0.024 27.67 1.54-499.04
Formula milk 13 (61.9) 8 (38.1) 0.372 3.62 0.22-61.11
Mixed 22 (78.6) 6 (21.4) 0.074 12.89 0.78-212.40

Table 6

The relationship between risk factors of SGA and catch-up growth"

Factors CUG1 CUG2 CUG3 CUG4 CUG5 CUG6
Yes No Yes No Yes No Yes No Yes No Yes No
Gestational hypertension
  No 32 21 50 20 48 19 42 9 20 7 12 4
  Yes 44 23 47 20 50 17 45 16 33 10 20 6
  P 0.550 0.869 0.697 0.277 0.800 >0.999
Gestational diabetes mellitus
  No 51 27 72 22 68 21 61 12 36 9 24 5
  Yes 25 17 25 18 30 15 26 13 17 8 8 5
  P 0.525 0.027 0.230 0.041 0.262 0.238
Liver and kidney diseases
  No 73 39 91 35 92 33 82 22 49 16 32 9
  Yes 3 5 6 5 6 3 5 3 4 1 0 1
  P 0.141 0.298 0.701 0.374 >0.999 0.238
Placental abnormalities
  No 67 36 83 32 85 32 76 22 51 14 32 10
  Yes 9 8 14 8 13 4 11 3 2 3 0 0
  P 0.337 0.420 0.783 >0.999 0.088
Umbilical cord abnormalities
  No 67 37 85 34 86 34 76 24 48 17 29 10
  Yes 9 7 12 6 12 2 11 1 5 0 3 0
  P 0.528 0.679 0.351 0.294 0.325 0.568
Twin pregnancy
  No 53 36 74 34 80 29 70 21 42 14 28 9
  Yes 23 8 23 6 18 7 17 4 11 3 4 1
  P 0.145 0.256 0.887 0.780 >0.999 >0.999
1
Finken MJJ , van der Steen M , Smeets CCJ , et al. Children born small for gestational age: Differential diagnosis, molecular genetic evaluation, and implications[J]. Endocr Rev, 2018, 39 (6): 851- 894.

doi: 10.1210/er.2018-00083
2
首都儿科研究所, 九市儿童体格发育调查协作组. 中国不同出生胎龄新生儿出生体重、身长和头围的生长参照标准及曲线[J]. 中华儿科杂志, 2020, 58 (9): 738- 746.
3
Xiang L , Li X , Mu Y , et al. Maternal characteristics and prevalence of infants born small for gestational age[J]. JAMA Netw Open, 2024, 7 (8): e2429434.

doi: 10.1001/jamanetworkopen.2024.29434
4
Hokken-Koelega ACS , van der Steen M , Boguszewski MCS , et al. International consensus guideline on small for gestational age: Etiology and management from infancy to early adulthood[J]. Endocr Rev, 2023, 44 (3): 539- 565.

doi: 10.1210/endrev/bnad002
5
Martín-Calvo N , Goni L , Tur JA , et al. Low birth weight and small for gestational age are associated with complications of childhood and adolescence obesity: Systematic review and meta-analysis[J]. Obes Rev, 2022, 23 (Suppl 1): e13380.
6
Schwarzenberg SJ , Georgieff MK; Committee on Nutrition . Advocacy for improving nutrition in the first 1000 days to support childhood development and adult health[J]. Pediatrics, 2018, 141 (2): e20173716.

doi: 10.1542/peds.2017-3716
7
Fenton TR , Kim JH . A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants[J]. BMC Pediatr, 2013, 13 (1): 59.

doi: 10.1186/1471-2431-13-59
8
《中华儿科杂志》编辑委员会, 中华医学会儿科学分会儿童保健学组, 中华医学会儿科学分会新生儿学组. 早产、低出生体重儿出院后喂养建议[J]. 中华儿科杂志, 2016, 54 (1): 6- 12.
9
Zhang L , Li Y , Liang S , et al. Postnatal length and weight growth velocities according to Fenton reference and their associated perinatal factors in healthy late preterm infants during birth to term-corrected age: An observational study[J]. Ital J Pediatr, 2019, 45 (1): 1.

doi: 10.1186/s13052-018-0596-4
10
Campisi SC , Carbone SE , Zlotkin S . Catch-up growth in full-term small for gestational age infants: A systematic review[J]. Adv Nutr, 2019, 10 (1): 104- 111.

doi: 10.1093/advances/nmy091
11
Osuchukwu OO, Reed DJ. Small for gestational age (archived)[M/OL]//StatPearls. Treasure Island (FL): StatPearls Publishing. (2024-08-11)[2025-06-10]. http://www.ncbi.nlm.nih.gov/books/NBK563247/.
12
Niu Z , Li K , Xie C , et al. Adverse birth outcomes and birth telomere length: A systematic review and meta-analysis[J]. J Pe-diatr, 2019, 215, 64- 74.
13
Salmón P , Millet C , Selman C , et al. Growth acceleration results in faster telomere shortening later in life[J]. Proc Biol Sci, 2021, 288 (1956): 20211118.
14
Rana R , McGrath M , Gupta P , et al. Feeding interventions for infants with growth failure in the first six months of life: A syste-matic review[J]. Nutrients, 2020, 12 (7): 2044.

doi: 10.3390/nu12072044
15
Sacchi C , Marino C , Nosarti C , et al. Association of intrauterine growth restriction and small for gestational age status with childhood cognitive outcomes: A systematic review and meta-analysis[J]. JAMA Pediatr, 2020, 174 (8): 772- 781.

doi: 10.1001/jamapediatrics.2020.1097
16
Zhao M , Dai H , Deng Y , et al. SGA as a risk factor for cerebral palsy in moderate to late preterm infants: A system review and meta-analysis[J]. Sci Rep, 2016, 6, 38853.

doi: 10.1038/srep38853
17
张懿敏, 邵树铭, 张晓蕊. 小于胎龄儿神经发育结局的研究进展[J]. 中华预防医学杂志, 2023, 57 (6): 935- 940.
18
王晓庆, 刘九月, 姚光. 小于胎龄儿早期脑发育及18~24月龄时神经发育状况的前瞻性队列研究[J]. 中国儿童保健杂志, 2023, 31 (4): 353- 358.
19
Díez López I , Cernada M , Galán L , et al. Small for gestational age: Concept, diagnosis and neonatal characterization, follow-up and recommendations[J]. An Pediatr, 2024, 101 (2): 124- 131.

doi: 10.1016/j.anpedi.2024.06.004
20
Cho H , Kim EK , Song IG , et al. Head growth during neonatal intensive care unit stay is related to the neurodevelopmental outcomes of preterm small for gestational age infants[J]. Pediatr Neonatol, 2021, 62 (6): 606- 611.

doi: 10.1016/j.pedneo.2021.05.023
21
Paulsen H , Ljungblad UW , Riiser K , et al. Early neurological and motor function in infants born moderate to late preterm or small for gestational age at term: A prospective cohort study[J]. BMC Pediatr, 2023, 23 (1): 390.

doi: 10.1186/s12887-023-04220-w
22
Beck C , Blue NR , Silver RM , et al. Maternal vitamin D status, fetal growth patterns, and adverse pregnancy outcomes in a multisite prospective pregnancy cohort[J]. Am J Clin Nutr, 2025, 121 (2): 376- 384.

doi: 10.1016/j.ajcnut.2024.11.018
23
Zhang Q , Zhang C , Wang Y , et al. Relationship of maternal obesity and vitamin D concentrations with fetal growth in early pregnancy[J]. Eur J Nutr, 2022, 61 (2): 915- 924.

doi: 10.1007/s00394-021-02695-w
24
韩冬, 张巍. 小于胎龄极低出生体重早产儿营养摄入与骨代谢特点的回顾性研究[J]. 中华新生儿科杂志, 2022, 37 (2): 128- 132.
25
林新祝, 李正红, 常艳美, 等. 早产儿肠内营养管理专家共识(2024年)[J]. 中国当代儿科杂志, 2024, 26 (6): 541- 552.
26
Sepúlveda-Valbuena N , Nieto-Ruiz A , Diéguez E , et al. Growth patterns and breast milk/infant formula energetic efficiency in healthy infants up to 18 months of life: The COGNIS study[J]. Br J Nutr, 2021, 126 (12): 1809- 1822.

doi: 10.1017/S000711452100057X
27
Embleton ND , Jennifer Moltu S , Lapillonne A , et al. Enteral nutrition in preterm infants (2022): A position paper from the ESPGHAN committee on nutrition and invited experts[J]. J Pediatr Gastroenterol Nutr, 2023, 76 (2): 248- 268.

doi: 10.1097/MPG.0000000000003642
28
Quigley M , Embleton ND , Meader N , et al. Donor human milk for preventing necrotising enterocolitis in very preterm or very low-birthweight infants[J]. Cochrane Database Syst Rev, 2024, 9 (9): CD002971.
[1] Rui LI, Jing PAN, Qing YANG, Yan XING, Xiaomei TONG. Impact of donor human milk bank on clinical outcomes in infants with very/extremely low birth weight [J]. Journal of Peking University (Health Sciences), 2025, 57(4): 759-763.
[2] Ping LI, Haixue WANG, Xiao GAO, Yajing HAN, Hui WANG, Haijun WANG, Yingying MU. A randomized controlled trial of weight management based on mobile health techno-logy among overweight or obese pregnant women [J]. Journal of Peking University (Health Sciences), 2025, 57(3): 465-472.
[3] WANG Li-fang, ZHOU Hong, ZHANG Yan, WANG Yan. Relationship between pre-pregnancy body mass index and preterm birth [J]. Journal of Peking University(Health Sciences), 2016, 48(3): 414-417.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!