Journal of Peking University(Health Sciences) ›› 2018, Vol. 50 ›› Issue (4): 607-612. doi: 10.3969/j.issn.1671-167X.2018.04.005

• Article • Previous Articles     Next Articles

Triptolide induces oxidative stress and apoptosis and activates PIK3/Akt signaling pathway in TM4 sertoli cells

WANG Hao, CHEN Liang, YE Xiao-yun   

  1. (Medical Center of Reproductive and Genetics,Department of Obstetrics and Gynecology,Peking University First Hospital, Beijing 100034, China)
  • Online:2018-08-18 Published:2018-08-18
  • Contact: CHEN Liang E-mail: bdyychenliang@163.com
  • Supported by:
    Supported by the Beijing Nature Science Foundation (7142158)

Abstract: Objective: To investigate the effect of triptolide (TP) on oxidative stress and apoptosis in TM4 sertoli cells and related molecular mechanism. Methods: TM4 cells were incubated with different concentrations of triptolide for 24 h, then collected for further experiments. Cell proliferation analysis was used to measure the inhibitive effect of triptolide on proliferation of TM4 cells; DCFH-DA (6-carboxy-2′,7′dichlorofluorescein diacetate) probe was used to stain the TM4 cells, the level change of intracellular ROS was discovered through flow cytometry; the TM4 cells were stained by Annexin V-FITC/PI to detect whether triptolide induced apoptosis in the TM4 cells; Protein was extracted from the TM4 cells in control and triptolide group. Western blot was performed to determine the expression of apoptosis marker protein cleaved-PARP and PI3K/Akt signaling pathway-related proteins [p-Akt (Ser473), Akt, p-mTOR (Ser2448), mTOR, p-p70S6K (Thr389), p70S6K]. Results: Cell proliferation analysis revealed that triptolide reduced the TM4 cells viability significantly compared with control group in a dosage-dependent manner [10 nmol/L: (73.77±20.95)%, 100 nmol/L: (51.60±10.43)%, 500 nmol/L: (44.34±5.78)%]; The level of intracellular ROS in the TM4 cells was significantly induced in a dosage-depen-dent manner (P<0.01); triptolide remarkably induced earlystage and late-stage apoptosis in the TM4 cells [control: (3.84±1.50)%, 100 nmol/L: (13.04±2.03)%, 200 nmol/L: (16.24±1.34)%, 400 nmol/L: (18.76±3.45)%]; The expression of cleaved-PARP was significantly upregulated in the TM4 cells after incubation with triptolide (P<0.01); The expression levels of p-Akt/Akt and p-p70S6K/p70s6k were significantly increased compared with control group (P<0.01). No significant change was observed among the expression levels of p-mTOR/mTOR (P>0.05). Conclusion: In vitro studies showed that triptolide could effectively suppress the proliferation and induce apoptosis of TM4 sertoli cells. The oxidative stress was upregulated after incubation with triptolide, which may be one of the mechanisms of cytotoxicity in TM4 cells. Treatment of triptolide led to activation of Akt and p70S6K, indicating that the PI3K/Akt signaling pathway may be involved in response to oxidative stress in TM4 cells. The activation of PI3K/Akt signaling pathway was one of the molecular mechanisms involved in triptolide-mediated oxidative stress in TM4 cells. Our study provides insight into alleviating reproductive toxicity of triptolide in clinical and developing male contraceptive.

Key words: Triptolide, Sertoli cell, Oxidative stress, Apoptosis, PI3K/Akt signaling pathway

CLC Number: 

  • R698
[1] Ya-dong GAO,An ZHU,Lu-di LI,Tao ZHANG,Shuo WANG,Dan-ping SHAN,Ying-zi LI,Qi WANG. Cytotoxicity and underlying mechanism of evodiamine in HepG2 cells [J]. Journal of Peking University (Health Sciences), 2021, 53(6): 1107-1114.
[2] Xue LOU,Li LIAO,Xing-jun LI,Nan WANG,Shuang LIU,Ruo-mei CUI,Jian XU. Methylation status and expression of TWEAK gene promoter region in peripheral blood of patients with rheumatoid arthritis [J]. Journal of Peking University (Health Sciences), 2021, 53(6): 1020-1025.
[3] BAI Feng,HE Yi-fan,NIU Ya-nan,YANG Ruo-juan,CAO Jing. Effects of ultrafine particulates on cardiac function in rat isolated heart [J]. Journal of Peking University (Health Sciences), 2021, 53(2): 240-245.
[4] Lei-zhen SU,Jie CHEN,Xian LI,Ping JI. Effects of salinomycin on proliferation and apoptosis of oral squamous cell carcinoma [J]. Journal of Peking University (Health Sciences), 2020, 52(5): 902-906.
[5] Yan XUAN,Yu CAI,Xiao-xuan WANG,Qiao SHI,Li-xin QIU,Qing-xian LUAN. Effect of Porphyromonas gingivalis infection on atherosclerosis in apolipoprotein-E knockout mice [J]. Journal of Peking University (Health Sciences), 2020, 52(4): 743-749.
[6] Liang GENG,Jing LV,Jing FAN. Effect of Fei-Liu-Ping ointment combined with cyclophosphamide on lung cancer cell proliferation and acidic microenvironment [J]. Journal of Peking University (Health Sciences), 2020, 52(2): 247-253.
[7] LI Man, LI Yuan, SUN Lin, SONG Jun-lai, LV Cong. High mobility group box 1 promotes apoptosis of astrocytes after oxygen glucose deprivation/reoxygenation by regulating the expression of Bcl-2 and Bax [J]. Journal of Peking University(Health Sciences), 2018, 50(5): 785-791.
[8] SUN Jing, SONG Wei-dong, YAN Si-yuan, XI Zhi-jun. Chloroquine inhibits viability of renal carcinoma cells and enhances sunitinib-induced caspase-dependent apoptosis [J]. Journal of Peking University(Health Sciences), 2018, 50(5): 778-784.
[9] ZHANG Yi1, SONG Xiao-ming1, ZHAO Qian, WANG Tong, Li Li-juan, CHEN Jie, XU Hong-bing, LIU Bei-bei, SUN Xiao-yan, HE Bei, HUANG Wei. Effects of exposure to ambient particulate matter and polycyclic aromatic hydrocarbons on oxidative stress biomarkers in the patients with chronic obstructive pulmonary disease [J]. Journal of Peking University(Health Sciences), 2017, 49(3): 394-402.
[10] WANG Yu-jie, GUO Xiang-yang, WANG Jun. Influences of repeated propofol anesthesia on hippocampal apoptosis and long-term learning and memory abilities of neonatal rats [J]. Journal of Peking University(Health Sciences), 2017, 49(2): 310-314.
[11] YANG Guang, CHENG Qing-li, LI Chun-lin, JIA Ya-li, YUE Wen, PEI Xue-tao, LIU Yang, ZHAO Jia-hui, DU Jing, AO Qiang-guo. High glucose reduced the repair function of kidney stem cells conditional medium to  the hypoxia-injured renal tubular epithelium cells [J]. Journal of Peking University(Health Sciences), 2017, 49(1): 125-130.
[12] CAO Pei, JIANG Xue-jun, XI Zhi-jun. Sunitinib induces autophagy via suppressing Akt/mTOR pathway in renal cell carcinoma [J]. Journal of Peking University(Health Sciences), 2016, 48(4): 584-589.
[13] TU Jing-yi, ZHU Ying, SHANG Shu-ling, ZHANG Xi, TANG Hui, WANG Rui-min. Keap1-tat peptide attenuates oxidative stress damage in hippocampal CA1 region and learning and memory deficits following global cerebral ischemia [J]. Journal of Peking University(Health Sciences), 2016, 48(1): 154-159.
[14] LI Peng, WAN Meng, LIU Jian-ru, LI Liang-zhong, ZHANG Da-kun. Effect of peroxisome proliferator-activated receptor-γ on endothelial cells oxidative stress induced by Porphyromonas gingivalis [J]. Journal of Peking University(Health Sciences), 2015, 47(6): 977-982.
[15] LI Gang, ZHANG Hong-xian, WANG Yun-peng, ZHANG Jing,HONG Kai, TIAN Xiao-jun, MA Lu-lin. Protective effect of phloroglucinol on renal ischemia and reperfusion injury [J]. Journal of Peking University(Health Sciences), 2015, 47(5): 743-748.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Author. English Title Test[J]. Journal of Peking University(Health Sciences), 2010, 42(1): 1 -10 .
[2] . [J]. Journal of Peking University(Health Sciences), 2009, 41(2): 188 -191 .
[3] . [J]. Journal of Peking University(Health Sciences), 2009, 41(3): 376 -379 .
[4] . [J]. Journal of Peking University(Health Sciences), 2009, 41(4): 459 -462 .
[5] . [J]. Journal of Peking University(Health Sciences), 2010, 42(1): 82 -84 .
[6] . [J]. Journal of Peking University(Health Sciences), 2007, 39(3): 319 -322 .
[7] . [J]. Journal of Peking University(Health Sciences), 2007, 39(3): 333 -336 .
[8] . [J]. Journal of Peking University(Health Sciences), 2007, 39(3): 337 -340 .
[9] . [J]. Journal of Peking University(Health Sciences), 2007, 39(3): 225 -328 .
[10] . [J]. Journal of Peking University(Health Sciences), 2007, 39(4): 346 -350 .