Journal of Peking University(Health Sciences) ›› 2018, Vol. 50 ›› Issue (6): 1120-1124. doi: 10.19723/j.issn.1671-167X.2018.06.033
• Article • Previous Articles
Yu-bing XIAO,Mu-yao GUO,Xiao-xia ZUO()
CLC Number:
[1] |
Liu Z, Davidson A . Taming lupus:a new understanding of pathogenesis is leading to clinical advances[J]. Nat Med, 2012,18(6):871-882.
doi: 10.1038/nm.2752 pmid: 3607103 |
[2] |
Ruiz-Irastorza G, Khamashta MA, Castellino G , et al. Systemic lupus erythematosus[J]. Lancet, 2001,357(9261):1027-1032.
doi: 10.1016/S0140-6736(00)04239-2 |
[3] |
O’Neill LA, Kishton RJ , RathmellJ. A guide to immunometabolism for immunologists[J]. Nat Rev Immunol, 2016,16(9):553-565.
doi: 10.1038/nri.2016.70 |
[4] |
Wang RN, Dillon CP, Shi LZ , et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation[J]. Immunity, 2011,35(6):871-882.
doi: 10.1016/j.immuni.2011.09.021 pmid: 3248798 |
[5] |
Buck MD , O’Sullivan D, Klein GR, et al. Mitochondrial dyna-mics controls T cell fate through metabolic programming[J]. Cell, 2016,166(1):63-76.
doi: 10.1016/j.cell.2016.05.035 pmid: 27293185 |
[6] |
Rhoads JP, Major AS, Rathmell JC . Fine tuning of immuno-metabolism for the treatment of rheumatic diseases[J]. Nat Rev Rheumatol, 2017,13(5):313-320.
doi: 10.1038/nrrheum.2017.54 pmid: 28381829 |
[7] |
Frauwirth KA, Riley JL, Harris MH , et al. The CD28 signaling pathway regulates glucose metabolism[J]. Immunity, 2002,16(6):769-777.
doi: 10.1016/S1074-7613(02)00323-0 pmid: 12121659 |
[8] |
Gerriets VA, Kishton RJ, Nichols AG , et al. Metabolic programming and PDHK1 control CD4 + T cell subsets and inflammation [J]. J Clin Invest, 2015,125(1):194-207.
doi: 10.1172/JCI76012 pmid: 25437876 |
[9] |
Jellusova J, Rickert RC . The PI3K pathway in B cell metabolism[J]. Crit Rev Biochem Mol Biol, 2016,51(5):359-378.
doi: 10.1080/10409238.2016.1215288 pmid: 27494162 |
[10] |
Cheng SC, Quintin J, Cramer RA , et al. mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity[J]. Science, 2014,345(6204):1250684.
doi: 10.1126/science.1250684 pmid: 4226238 |
[11] |
Perl A . Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases[J]. Nat Rev Rheumatol, 2016,12(3):169-182.
doi: 10.1038/nrrheum.2015.172 pmid: 26698023 |
[12] |
Gerriets VA, Kishton RJ, Johnson M O , et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression[J]. Nat Immunol, 2016,17(12):1459-1466.
doi: 10.1038/ni.3577 pmid: 27695003 |
[13] |
Iwata T N, Ramirez JA, Tsang M , et al. Conditional disruption of raptor reveals an essential role for mTORC1 in B cell development, survival, and metabolism[J]. J Immunol, 2016,197(6):2250-2260.
doi: 10.4049/jimmunol.1600492 pmid: 5009877 |
[14] |
Freemerman AJ , JohnsonAR, Sacks GN, et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype[J]. J Biol Chem, 2014,289(11):7884-7896.
doi: 10.1074/jbc.M113.522037 |
[15] |
Tso TK, Huang HY, Chang CK , et al. Clinical evaluation of insulin resistance and beta-cell function by the homeostasis model assessment in patients with systemic lupus erythematosus[J]. Clin Rheumatol, 2004,23(5):416-420.
doi: 10.1007/s10067-004-0908-5 pmid: 15459813 |
[16] |
Gabriel CL, Smith PB, Mendez-Fernandez YV , et al. Autoimmune-mediated glucose intolerance in a mouse model of systemic lupus erythematosus[J]. Am J Physiol Endocrinol Metab, 2012,303(11):E1313-E1324.
doi: 10.1152/ajpendo.00665.2011 pmid: 23032686 |
[17] |
Yan B, Huang J, Zhang C , et al. Serum metabolomic profiling in patients with systemic lupus erythematosus by GC/MS[J]. Mod Rheumatol, 2016,26(6):914-922.
doi: 10.3109/14397595.2016.1158895 pmid: 26915395 |
[18] |
Yin YM, Choi SC, Xu Z , et al. Glucose oxidation is critical for CD4 + T cell activation in a mouse model of systemic lupus erythematosus [J]. J Immunol, 2016,196(1):80-90.
doi: 10.4049/jimmunol.1501537 |
[19] |
Yin YM, Choi SC, Xu Z , et al. Normalization of CD4 + T cell metabolism reverses lupus [J]. Sci Transl Med, 2015,7(274):218-274.
doi: 10.1126/scitranslmed.aaa0835 pmid: 25673763 |
[20] |
Wahl D R, Petersen B, Warner R , et al. Characterization of the metabolic phenotype of chronically activated lymphocytes[J]. Lupus, 2010,19(13):1492-1501.
doi: 10.1177/0961203310373109 pmid: 20647250 |
[21] |
Gergely PJ, Grossman C, Niland B , et al. Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus[J]. Arthritis Rheum, 2002,46(1):175-190.
doi: 10.1002/1529-0131(200201)46:1<175::AID-ART10015>3.0.CO;2-H pmid: 11817589 |
[22] |
Doherty E, Oaks Z, Perl A . Increased mitochondrial electron transport chain activity at complex Ⅰ is regulated by N-acetylcysteine in lymphocytes of patients with systemic lupus erythematosus[J]. Antioxid Redox Signal, 2014,21(1):56-65.
doi: 10.1089/ars.2013.5702 |
[23] |
Perl A, Gergely PJ, Banki K . Mitochondrial dysfunction in T cells of patients with systemic lupus erythematosus[J]. Int Rev Immunol, 2004,23(3/4):293-313.
doi: 10.1080/08830180490452576 pmid: 15204090 |
[24] |
Perl A, Hanczko R, Telarico T , et al. Oxidative stress, inflammation and carcinogenesis are controlled through the pentose phosphate pathway by transaldolase[J]. Trends Mol Med, 2011,17(7):395-403.
doi: 10.1016/j.molmed.2011.01.014 pmid: 3116035 |
[25] |
Tsokos GC . Systemic lupus erythematosus[J]. N Engl J Med, 2011,365(22):2110-2121.
doi: 10.1056/NEJMra1100359 |
[26] |
Perry DJ, Yin YM, Telarico T , et al. Murine lupus susceptibility locus Sle1c2 mediates CD4 + T cell activation and maps to estrogen-related receptor gamma [J]. J Immunol, 2012,189(2):793-803.
doi: 10.4049/jimmunol.1200411 pmid: 3392454 |
[27] |
Huss JM, Garbacz WG, Xie W . Constitutive activities of estrogen-related receptors: transcriptional regulation of metabolism by the ERR pathways in health and disease[J]. Biochim Biophys Acta, 2015,1852(9):1912-1927.
doi: 10.1016/j.bbadis.2015.06.016 pmid: 26115970 |
[28] |
Vyshkina T, Sylvester A, Sadiq S , et al. Association of common mitochondrial DNA variants with multiple sclerosis and systemic lupus erythematosus[J]. Clin Immunol, 2008,129(1):31-35.
doi: 10.1016/j.clim.2008.07.011 pmid: 2567049 |
[29] |
Jacobs SR, Herman CE, Maciver NJ , et al. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways[J]. J Immunol, 2008,180(7):4476-4486.
doi: 10.4049/jimmunol.180.7.4476 pmid: 18354169 |
[30] |
Macintyre AN, Gerriets VA, Nichols AG , et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function[J]. Cell Metab, 2014,20(1):61-72.
doi: 10.1016/j.cmet.2014.05.004 pmid: 24930970 |
[31] |
Sobel ES, Brusko TM, Butfiloski EJ , et al. Defective response of CD4 + T cells to retinoic acid and TGFbeta in systemic lupus erythematosus [J]. Arthritis Res Ther, 2011,13(3):R106.
doi: 10.1186/ar3387 pmid: 3218921 |
[32] |
Morel L, Croker BP, Blenman KR , et al. Genetic reconstitution of systemic lupus erythematosus immunopathology with polycongenic murine strains[J]. Proc Natl Acad Sci USA, 2000,97(12):6670-6675.
doi: 10.1073/pnas.97.12.6670 pmid: 10841565 |
[33] |
Morel L . Immunometabolism in systemic lupus erythematosus[J]. Nat Rev Rheumatol, 2017,13(5):280-290.
doi: 10.1038/nrrheum.2017.43 pmid: 28360423 |
[34] |
Perl A, Hanczko R, Lai ZW , et al. Comprehensive metabolome analyses reveal N-acetylcysteine-responsive accumulation of kynurenine in systemic lupus erythematosus: implications for activation of the mechanistic target of rapamycin[J]. Metabolomics, 2015,11(5):1157-1174.
doi: 10.1007/s11306-015-0772-0 pmid: 4559110 |
[35] |
Krishnan S, Nambiar MP, Warke VG , et al. Alterations in lipid raft composition and dynamics contribute to abnormal T cell responses in systemic lupus erythematosus[J]. J Immunol, 2004,172(12):7821-7831.
doi: 10.4049/jimmunol.172.12.7821 pmid: 15187166 |
[36] |
McDonald G, Deepak S, Miguel L , et al. Normalizing glycosphingolipids restores function in CD4 + T cells from lupus patients [J]. J Clin Invest, 2014,124(2):712-724.
doi: 10.1172/JCI69571 |
[37] |
Deng GM, Tsokos GC . Cholera toxin B accelerates disease progression in lupus-prone mice by promoting lipid raft aggregation[J]. J Immunol, 2008,181(6):4019-4026.
doi: 10.1016/j.jpedsurg.2008.12.030 pmid: 2556981 |
[38] |
Cui G, Qin X, Wu L , et al. Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation[J]. J Clin Invest, 2011,121(2):658-670.
doi: 10.1172/JCI42974 pmid: 3026720 |
[39] |
Jeon JY, Nam JY, Kim HA , et al. Liver X receptors alpha gene (NR1H3) promoter polymorphisms are associated with systemic lupus erythematosus in Koreans[J]. Arthritis Res Ther, 2014,16(3):R112.
doi: 10.1186/ar4563 pmid: 4095571 |
[40] |
Ramiscal RR, Parish IA, Lee-Young RS , et al. Attenuation of AMPK signaling by ROQUIN promotes T follicular helper cell formation[J]. Elife, 2015,4:e08698.
doi: 10.7554/eLife.08698 pmid: 4716841 |
[41] |
Pratama A, Srivastava M, Williams NJ , et al. MicroRNA-146a regulates ICOS-ICOSL signalling to limit accumulation of T follicular helper cells and germinal centres[J]. Nat Commun, 2015,6:6436.
doi: 10.1038/ncomms7436 |
[42] |
Fernandez DR, Telarico T, Bonilla E , et al. Activation of mammalian target of rapamycin controls the loss of TCRzeta in lupus T cells through HRES-1/Rab4-regulated lysosomal degradation[J]. J Immunol, 2009,182(4):2063-2073.
doi: 10.4049/jimmunol.0803600 pmid: 19201859 |
[43] |
Lai ZW, Borsuk R, Shadakshari A , et al. Mechanistic target of rapamycin activation triggers IL-4 production and necrotic death of double-negative T cells in patients with systemic lupus erythematosus[J]. J Immunol, 2013,191(5):2236-2246.
doi: 10.4049/jimmunol.1301005 pmid: 23913957 |
[44] |
Kato H, Perl A . Mechanistic target of rapamycin complex 1 expands Th17 and IL-4 + CD4 -CD8 - double-negative T cells and contracts regulatory T cells in systemic lupus erythematosus [J]. J Immunol, 2014,192(9):4134-4144.
doi: 10.4049/jimmunol.1301859 pmid: 24683191 |
[45] |
Corcoran SE , O’Neill LA. HIF1alpha and metabolic reprogramming in inflammation[J]. J Clin Invest, 2016,126(10):3699-3707.
doi: 10.1172/JCI84431 pmid: 27571407 |
[1] | Zhihui WU, Mingzhi HU, Qiaoying ZHAO, Fengfeng LV, Jingying ZHANG, Wei ZHANG, Yongfu WANG, Xiaolin SUN, Hui WANG. Immunomodulatory mechanism of umbilical cord mesenchymal stem cells modified by miR-125b-5p in systemic lupus erythematosus [J]. Journal of Peking University (Health Sciences), 2024, 56(5): 860-867. |
[2] | Limin REN,Chuchu ZHAO,Yi ZHAO,Huiqiong ZHOU,Liyun ZHANG,Youlian WANG,Lingxun SHEN,Wenqiang FAN,Yang LI,Xiaomei LI,Jibo WANG,Yongjing CHENG,Jiajing PENG,Xiaozhen ZHAO,Miao SHAO,Ru Li. Low disease activity and remission status of systemic lupus erythematosus in a real-world study [J]. Journal of Peking University (Health Sciences), 2024, 56(2): 273-278. |
[3] | Wen-gen LI,Xiao-dong GU,Rui-qiang WENG,Su-dong LIU,Chao CHEN. Expression and clinical significance of plasma exosomal miR-34-5p and miR-142-3p in systemic sclerosis [J]. Journal of Peking University (Health Sciences), 2023, 55(6): 1022-1027. |
[4] | Zhi-jun LUO,Jia-jia WU,You SONG,Chun-li MEI,Rong DU. Systemic lupus erythematosus associated macrophage activation syndrome with neuropsychiatric symptoms: A report of 2 cases [J]. Journal of Peking University (Health Sciences), 2023, 55(6): 1111-1117. |
[5] | Hai-hong YAO,Fan YANG,Su-mei TANG,Xia ZHANG,Jing HE,Yuan JIA. Clinical characteristics and diagnostic indicators of macrophage activation syndrome in patients with systemic lupus erythematosus and adult-onset Still's disease [J]. Journal of Peking University (Health Sciences), 2023, 55(6): 966-974. |
[6] | Xiang-ge ZHAO,Jia-qing LIU,Hui-na HUANG,Zhi-min LU,Zi-ran BAI,Xia LI,Jing-jing QI. Interferon-α mediating the functional damage of CD56dimCD57+natural killer cells in peripheral blood of systemic lupus erythematosuss [J]. Journal of Peking University (Health Sciences), 2023, 55(6): 975-981. |
[7] | Zhuo-hua LIN,Ru-yi CAI,Yang SUN,Rong MU,Li-gang CUI. Methodology and clinical use of superb microvascular imaging in assessing micro-circulation changes of fingertips in systemic sclerosis [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 636-640. |
[8] | Lin-qi ZHANG,Jing ZHAO,Hong-yan WANG,Zong-yi WANG,Ying-ni LI,Ji-yang TANG,Si-ying LI,Jin-feng QU,Ming-wei ZHAO. Relationship between anti-ENO1 antibody and systemic lupus erythematosus patients with retinopathy [J]. Journal of Peking University (Health Sciences), 2022, 54(6): 1099-1105. |
[9] | Min LI,Lin-qing HOU,Yue-bo JIN,Jing HE. Clinical and immunological characteristics of systemic lupus erythematosus with retinopathy [J]. Journal of Peking University (Health Sciences), 2022, 54(6): 1106-1111. |
[10] | Miao SHAO,Hui-fang GUO,Ling-yan LEI,Qing ZHAO,Yan-jie DING,Jin LIN,Rui WU,Feng YU,Yu-cui LI,Hua-li MIAO,Li-yun ZHANG,Yan DU,Rui-ying JIAO,Li-xia PANG,Li LONG,Zhan-guo LI,Ru LI. A multicenter study on the tolerance of intravenous low-dose cyclophosphamide in systemic lupus erythematosus [J]. Journal of Peking University (Health Sciences), 2022, 54(6): 1112-1116. |
[11] | Fu-zheng GUO,Xiu-juan ZHAO,Jiu-xu DENG,Zhe DU,Tian-bing WANG,Feng-xue ZHU. Early changes within the lymphocyte population are associated with the long term prognosis in severely injured patients [J]. Journal of Peking University (Health Sciences), 2022, 54(3): 552-556. |
[12] | TIAN Jia-yi,ZHANG Xia,CHENG Gong,LIU Qing-hong,WANG Shi-yang,HE Jing. Serum interleukin-2 receptor α as a clinical biomarker in patients with systemic lupus erythematosus [J]. Journal of Peking University (Health Sciences), 2021, 53(6): 1083-1087. |
[13] | Zheng-fang LI,Xue WU,Li-jun WU,Cai-nan LUO,Ya-mei SHI,Yan ZHONG,Xiao-mei CHEN,Xin-yan MENG. Clinical features of patients with Rhupus syndrome [J]. Journal of Peking University (Health Sciences), 2021, 53(5): 933-937. |
[14] | Jian-mei ZOU,Li-jun WU,Cai-nan LUO,Ya-mei SHI,Xue WU. Relationship of serum 25- hydroxy vitamin D and systemic lupus erythematosus [J]. Journal of Peking University (Health Sciences), 2021, 53(5): 938-941. |
[15] | MA Xiang-bo,ZHANG Xue-wu,JIA Ru-lin,GAO Ying,LIU Hong-jiang,LIU Yu-fang,LI Ying-ni. Application of lymphocytes test in peripheral blood of patients with systemic sclerosis during the treatment [J]. Journal of Peking University (Health Sciences), 2021, 53(4): 721-727. |
|