Journal of Peking University(Health Sciences) ›› 2019, Vol. 51 ›› Issue (3): 556-563. doi: 10.19723/j.issn.1671-167X.2019.03.027

Previous Articles     Next Articles

Analysis of single-nucleotide polymorphism of Sonic hedgehog signaling pathway in non-syndromic cleft lip and/or palate in the Chinese population

Jie-ni ZHANG1,*,Feng-qi SONG1,*,Shao-nan ZHOU1,Hui ZHENG1,Li-ying PENG1,Qian ZHANG2,Wang-hong ZHAO3,Tao-wen ZHANG4,Wei-ran LI1,Zhi-bo ZHOU5,Jiu-xiang LIN1△(),Feng CHEN2△()   

  1. 1. Department of Orthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
    2. Department of Center Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
    3. Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
    4. Department of Orthodontics, Yantai Stomatological Hospital, Yantai 264000, Shandong, China
    5. Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
  • Received:2019-03-20 Online:2019-05-10 Published:2019-06-26
  • Contact: Jie-ni ZHANG,Feng-qi SONG E-mail:jxlin@pku.edu.cn;chenfeng2011@hsc.pku.edu.cn
  • Supported by:
    Supported by the Fundamental Research Funds for the Central Universities: Peking University Medicine Seed Fund for Interdisciplinary Research (BMU2018MX017), the Fundamental Research Funds for the Central Universities: Peking University Medicine Fund of Fostering Young Scholars’ Scientific & Technological Innovation (BMU2018PY025), and the National Natural Science Foundation(81870747,81860194)

RICH HTML

  

Abstract: Objective: To study the relationship between Sonic hedgehog (Shh) associated single-nucleotide polymorphism (SNP) and non-syndromic cleft lip and/or palate (NSCL/P), and to explore the risk factors of cleft lip and/or palate. Many studies suggest that the pathogenesis of NSCL/P could be related to genes that control early development, in which the Shh signaling pathway plays an important role.Methods: Peripheral blood was collected from 197 individuals (100 patients with NSCL/P and 97 healthy controls). Haploview software was used for haplotype analysis and Tag SNP were selected, based on the population data of Han Chinese in Beijing of the international human genome haplotype mapping project. A total of 27 SNP were selected for the 4 candidate genes of SHH, PTCH1, SMO and GLI2 in the Shh signaling pathway. The genotypes of 27 SNP were detected and analyzed by Sequenom mass spectrometry. The data were analyzed by chi-squared test and an unconditional Logistic regression model. Results: The selected SNP basically covered the potential functional SNP of the target genes, and its minimum allele frequency (MAF) was >0.05: GLI2 73.5%, PTCH1 91.0%, SMO 100.0%, and SHH 75.0%. It was found that the genotype frequency of SNP (rs12674259) located in SMO gene and SNP (rs2066836) located in PTCH1 gene were significantly different between the NSCL/P group and the control group. Linkage disequilibrium was also found on 3 chromosomes (chromosomes 2, 7 and 9) where the 4 candidate genes were located. However, in the analysis of linkage imbalance haplotype, there was no significant difference between the disease group and the control group.Conclusion: In China, NSCL/P is the most common congenital disease in orofacial region. However, as it is a multigenic disease and could be affected by multiple factors, such as the external environment, the etiology of NSCL/P has not been clearly defined. This study indicates that Shh signaling pathway is involved in the occurrence of NSCL/P, and some special SNP of key genes in this pathway are related to cleft lip and/or palate, which provides a new direction for the etiology research of NSCL/P and may provide help for the early screening and risk prediction of NSCL/P.

Key words: Non-syndromic cleft lip and/or palate, Sonic hedgehog, Single-nucleotide polymorphism, Sequennom massarray

CLC Number: 

  • R393

"

Table 2

Tests of HWE for all SNP"

CHR SNP A1 A2 GENO(A1A1/A1A2/A2A2) P
2 rs17390009 G C 0/4/67 1.000
2 rs7604538 T C 19/46/31 0.836
2 rs735557 A G 11/42/42 1.000
2 rs4848122 T C 13/40/32 1.000
2 rs7582470 A G 23/40/34 0.104
2 rs1992900 C T 14/48/33 0.674
2 rs895479 G A 3/39/55 0.266
2 rs4848124 C T 3/39/53 0.261
2 rs277555 C T 4/40/52 0.414
2 rs277536 A G 13/39/42 0.493
2 rs1187935 C A 7/31/48 0.577
2 rs3738880 A C 21/52/23 0.540
7 rs2718107 A C 22/38/35 0.093
7 rs4731562 A G 8/43/43 0.638
7 rs2566871 T C 24/41/32 0.154
7 rs12674259 T G 4/19/77 0.062
7 rs9607 A G 5/37/52 0.786
7 rs4728160 G C 3/37/55 0.385
7 rs1233560 C T 1/40/56 0.038
7 rs208684 C A 4/33/58 1.000
9 rs16909859 A G 5/22/73 0.069
9 rs357564 G A 21/39/33 0.204
9 rs2236407 G A 12/42/43 0.821
9 rs2066836 T C 0/15/75 1.000
9 rs2277184 G A 2/20/75 0.632
9 rs2297088 A G 13/42/42 0.657
9 rs2282041 G A 1/22/74 1.000

Table 3

Chi-squared analysis of allele in controls and NSCL/P patients"

SNP A1 A2 CHISQ P OR SE 95%CI
rs17390009 G C 0.605 0.437 1.736 0.718 0.425-7.086
rs7604538 T C 0.044 0.833 0.956 0.214 0.629-1.454
rs735557 A G 0.138 0.710 0.919 0.227 0.589-1.434
rs4848122 T C 0.869 0.351 1.256 0.245 0.777-2.031
2 rs4848124 C T 0.256 0.4776
2 rs277555 C T 0.254 0.3475
2 rs277536 A G 0.342 0.435
2 rs1187935 C A 0.260 0.4666
2 rs3738880 A C 0.490 0.4396
7 rs2718107 A C 0.418 0.4318
7 rs4731562 A G 0.338 0.3347
7 rs2566871 T C 0.447 0.4588
7 rs12674259 T G 0.160 0.0426
7 rs9607 A G 0.244 0.266
7 rs4728160 G C 0.235 0.2468
7 rs1233560 C T 0.239 0.4629
7 rs208684 C A 0.236 0.2683
9 rs16909859 A G 0.178 0.1479
9 rs357564 G A 0.414 0.3814
9 rs2236407 G A 0.343 0.3832
9 rs2066836 T C 0.090 0.1094
9 rs2277184 G A 0.150 0.0865
9 rs2297088 A G 0.360 0.4098
9 rs2282041 G A 0.113 0.1163

Table 4

Logistic tests of association in controls and NSCL/P patients"

CHR SNP A1 A2 OR SE 95%CI P
2 rs17390009 G C 2.173 0.746 0.503-9.380 0.298
2 rs17390009 G C 2.173 0.746 0.503-9.380 0.298
2 rs7604538 T C 0.960 0.212 0.634-1.453 0.846
2 rs735557 A G 0.902 0.224 0.582-1.398 0.644
2 rs4848122 T C 1.266 0.243 0.787-2.037 0.331
2 rs7582470 A G 1.041 0.202 0.701-1.545 0.843
2 rs1992900 C T 1.146 0.230 0.731-1.796 0.553
2 rs895479 G A 0.947 0.259 0.570-1.573 0.834
2 rs4848124 C T 1.387 0.261 0.832-2.312 0.209
2 rs277555 C T 1.125 0.254 0.684-1.850 0.644
2 rs277536 A G 0.974 0.227 0.625-1.518 0.907
2 rs1187935 C A 0.975 0.247 0.601-1.583 0.920
2 rs3738880 A C 1.004 0.209 0.666-1.513 0.986
7 rs2718107 A C 0.882 0.209 0.586-1.329 0.549
7 rs4731562 A G 1.374 0.245 0.850-2.221 0.195
7 rs2566871 T C 0.888 0.207 0.592-1.333 0.567
7 rs12674259 T G 0.696 0.298 0.388-1.249 0.225
7 rs9607 A G 0.861 0.253 0.525-1.413 0.553
7 rs4728160 G C 1.003 0.255 0.608-1.653 0.991
7 rs1233560 C T 1.450 0.271 0.852-2.466 0.171
7 rs208684 C A 1.206 0.247 0.744-1.955 0.447
9 rs16909859 A G 0.752 0.251 0.460-1.231 0.257
9 rs357564 G A 0.871 0.207 0.581-1.308 0.507
9 rs2236407 G A 0.981 0.227 0.629-1.529 0.931
9 rs2066836 T C 1.224 0.358 0.607-2.467 0.572
9 rs2277184 G A 1.475 0.297 0.825-2.637 0.190
9 rs2297088 A G 1.043 0.215 0.684-1.589 0.846
9 rs2282041 G A 0.666 0.346 0.338-1.313 0.241

Table 5

Association statistics of the NSCL/P and control panels"

SNP Genotype Control NSCL/P OR (95%CI) P(OR) P(Logistic) P(Bonferroni) P(HWE)
rs12674259 G/G 77 (77%) 61 (62.9%) 1
G/T 19 (19%) 36 (37.1%) 0.42 (0.22-0.81) 0.0017 0.0016 0.043 0.062
T/T 4 (4%) 0 (0%) NA (0.00-NA)
rs7582470 A G 0.062 0.804 1.054 0.213 0.695-1.599
rs1992900 C T 0.337 0.561 1.134 0.217 0.742-1.735
rs895479 G A 0.088 0.767 0.930 0.247 0.573-1.507
rs4848124 C T 1.851 0.174 1.402 0.249 0.861-2.283
rs277555 C T 0.375 0.540 1.162 0.246 0.718-1.882
rs277536 A G 0.000 0.989 1.003 0.225 0.646-1.559
rs1187935 C A 0.001 0.974 0.992 0.253 0.604-1.628
rs3738880 A C 0.000 1.000 1.000 0.211 0.661-1.512
rs2718107 A C 0.347 0.556 0.881 0.215 0.578-1.343
rs4731562 A G 1.596 0.207 1.336 0.229 0.852-2.093
rs2566871 T C 0.304 0.581 0.890 0.212 0.587-1.348
rs12674259 T G 1.527 0.217 0.698 0.292 0.393-1.237
rs9607 A G 0.450 0.503 0.846 0.250 0.519-1.380
rs4728160 G C 0.001 0.973 0.992 0.250 0.607-1.619
rs1233560 C T 1.640 0.200 1.380 0.252 0.842-2.261
rs208684 C A 0.790 0.374 1.248 0.250 0.765-2.035
rs16909859 A G 1.489 0.222 0.714 0.277 0.415-1.228
rs357564 G A 0.479 0.489 0.860 0.218 0.561-1.318
rs2236407 G A 0.002 0.965 1.010 0.221 0.655-1.558
rs2066836 T C 0.310 0.578 1.239 0.386 0.581-2.642
rs2277184 G A 2.396 0.122 1.588 0.300 0.881-2.859
rs2297088 A G 0.114 0.736 1.077 0.219 0.701-1.653
rs2282041 G A 1.227 0.268 0.686 0.342 0.351-1.340

Figure 1

Distribution frequency and multiplex polymerase chain reaction"

Figure 2

Linkage disequilibrium blocks in the GLI2(2q14), SMO(7q32), SHH(7q36) and PTCH1(9q22)"

[1] Mossey PA, Little J, Munger RG , et al. Cleft lip and palate[J]. Lancet, 2009,374(9703):1773-1785.
doi: 10.1016/S0140-6736(09)60695-4
[2] Dixon MJ, Marazita ML, Beaty TH , et al. Cleft lip and palate: understanding genetic and environmental influences[J]. Nat Rev Genet, 2011,12(3):167-178.
[3] Lidral AC, Murray JC . Genetic approaches to identify disease genes for birth defects with cleft lip/palate as a model[J]. Birth Defects Res B, 2004,70(12):893-901.
doi: 10.1002/(ISSN)1542-0760
[4] Schliekelman P, Slatkin M . Multiplex relative risk and estimation of the number of loci underlying an inherited disease[J]. Am J Hum Genet, 2003,71(6):1369-1385.
[5] Ludwig KU, Mangold E, Herms S , et al. Genome-wide meta-analyses of nonsyndromic cleft lip with or without cleft palate identify six new risk loci[J]. Nat Genet, 2012,44(9):968-971.
doi: 10.1038/ng.2360
[6] Marazita ML, Mooney MP . Current concepts in the embryology and genetics of cleft lip and cleft palate[J]. Clin Plast Surg, 2004,31(2):125-140.
doi: 10.1016/S0094-1298(03)00138-X
[7] Zhang J, Zhou S, Zhang Q , et al. Proteomic analysis of RBP4/vitamin A in children with cleft lip and/or palate[J]. J Dent Res, 2014,93(6):547-552.
doi: 10.1177/0022034514530397
[8] Hu D, Helms JA . The role of sonic hedgehog in normal and abnormal craniofacial morphogenesis[J]. Development, 1999,126(21):4873-4884.
[9] Vieira AR, Castilla EE, Ming JE , et al. Mutational analysis of the Sonic hedgehog gene in 220 newborns with oral clefts in a South American (ECLAMC) population[J]. Am J Med Genet, 2002,108(1):12-15.
doi: 10.1002/ajmg.10204
[10] Han J, Mayo J, Xu X , et al. Indirect modulation of Shh signaling by Dlx5 affects the oral-nasal patterning of palate and rescues cleft palate in Msx1-null mice[J]. Development, 2009,136(24):4225-4233.
doi: 10.1242/dev.036723
[11] Shimamura K, Hartigan DJ, Martinez S , et al. Longitudinal organization of the anterior neural plate and neural tube[J]. Development, 1995,121(12):3923-3933.
[12] Belloni E, Muenke M, Roessler E , et al. Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly[J]. Nat Genet, 1996,14(3):353-356.
doi: 10.1038/ng1196-353
[13] Chiang C, Litingtung Y, Lee E , et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function[J]. Nature, 1996,383(6599):407-413.
doi: 10.1038/383407a0
[14] Rahnama F, Shimokawa T, Lauth M , et al. Inhibition of GLI1 gene activation by Patched1[J]. Biochem J, 2006,394(Pt 1):19-26.
doi: 10.1042/BJ20050941
[15] Beaty TH, Fallin MD, Hetmanski JB , et al. Haplotype diversity in 11 candidate genes across four populations[J]. Genetics, 2005,171(1):259-267.
doi: 10.1534/genetics.105.043075
[16] Xing J, Witherspoon DJ, Watkins WS , et al. HapMap tag SNP transferability in multiple populations: general guidelines[J]. Genomics, 2008,92(1):41-51.
doi: 10.1016/j.ygeno.2008.03.011
[17] Jiang L, Zhang C, Li Y , et al. A non-synonymous polymorphism Thr115Met in the EpCAM gene is associated with an increased risk of breast cancer in Chinese population[J]. Breast Cancer Res Treat, 2011,126(2):487-495.
doi: 10.1007/s10549-010-1094-6
[18] Ong KL, Li M, Tso AK , et al. Association of genetic variants in the adiponectin gene with adiponectin level and hypertension in Hong Kong Chinese[J]. Eur J Endocrinol, 2010,163(2):251-257.
doi: 10.1530/EJE-10-0251
[19] Barrett JC, Fry B, Maller J , et al. Haploview: analysis and visualization of LD and haplotype maps[J]. Bioinformatics, 2005,21(2):263-265.
doi: 10.1093/bioinformatics/bth457
[20] Farias LC, Gomes CC, Brito JA , et al. Loss of heterozygosity of the PTCH gene in ameloblastoma[J]. Hum Pathol, 2012,43(8):1229-1233.
doi: 10.1016/j.humpath.2011.08.026
[21] Cohen MM . Holoprosencephaly: clinical, anatomic, and molecular dimensions.[J]. Birth Defects Res, 2006,76(9):658-673.
doi: 10.1002/(ISSN)1542-0760
[22] Carter TC, Molloy AM, Pangilinan F , et al. Testing reported associations of genetic risk factors for oral clefts in a large Irish study population[J]. Birth Defects Res, 2010,88(2):84-93.
[23] Brand M, Heisenberg CP, Warga RM , et al. Mutations affecting development of the midline and general body shape during zebrafish embryogenesis[J]. Development, 1996,123(6):129-142.
[24] Eberhart JK, Swartz ME, Crump JG , et al. Early hedgehog signaling from neural to oral epithelium organizes anterior craniofacial development[J]. Development, 2006,133(6):1069-1077.
doi: 10.1242/dev.02281
[25] Yahya MJ, Ismail PB, Nordin NB , et al. CNDP1, NOS3, and MnSOD polymorphisms as risk factors for diabetic nephropathy among type 2 diabetic patients in Malaysia[J]. J Nutr Metab, 2019(3):1-13.
[26] Zhuo M, Zhuang X, Tang W , et al. Theimpact of IL-16 3’UTR polymorphism rs859 on lung carcinoma susceptibility among Chinese han individuals[J]. Biomed Res Int, 2018,12(24):1-10.
[27] Beaty TH, Hetmanski JB, Fallin MD , et al. Analysis of candidate genes on chromosome 2 in oral cleft case-parent trios from three populations[J]. Hum Genet, 2006,120(4):501-518.
doi: 10.1007/s00439-006-0235-9
[28] Levi B, James AW, Nelson ER , et al. Role of Indian hedgehog signaling in palatal osteogenesis[J]. Plast Reconstr Surg, 2011,127(3):1182-1190.
doi: 10.1097/PRS.0b013e3182043a07
[29] Helms JA, Kim CH, Hu D , et al. Sonic hedgehog participates in craniofacial morphogenesis and is down-regulated by teratogenic doses of retinoic acid[J]. Dev Biol, 1997,187(1):1-35.
doi: 10.1006/dbio.1997.8572
[1] Jing ZHANG,Jie CHEN,Gui-wen GUAN,Ting ZHANG,Feng-min LU,Xiang-mei CHEN. Expression and clinical significance of chemokine CXCL10 and its receptor CXCR3 in hepatocellular carcinoma [J]. Journal of Peking University(Health Sciences), 2019, 51(3): 402-408.
[2] Zhi-ming SUN,Qian CHEN,Ming-hua LI,Wei-ning MA,Xu-yang ZHAO,Zhuo HUANG. Chronic phosphoproteomic in temporal lobe epilepsy mouse models induced by kainic acid [J]. Journal of Peking University(Health Sciences), 2019, 51(2): 197-205.
[3] YANG Liu,CHU Xiao-yu,ZHAO Qi. Effects of RhoA on the adherens junction of murine ameloblasts [J]. Journal of Peking University(Health Sciences), 2018, 50(3): 521-526.
[4] GONG Yan-qing, ZHANG Cui-jian, HE Shi-ming, LI Xue-song, ZhOU Li-qun, GUO Ying-lu. Nuclear export signal of androgen receptor regulated of androgen receptor stability in prostate cancer [J]. Journal of Peking University(Health Sciences), 2017, 49(4): 569-574.
[5] CAI Yuan-fa, ZHANG Hua-ming, NIU Wen-yi, ZOU Yong-qiu, MA De-fu. Effects of equol on colon cancer cell proliferation [J]. Journal of Peking University(Health Sciences), 2017, 49(3): 383-387.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!