Journal of Peking University(Health Sciences) ›› 2019, Vol. 51 ›› Issue (3): 564-570. doi: 10.19723/j.issn.1671-167X.2019.03.028
Previous Articles Next Articles
Ren ZHOU1,Hong-chen ZHENG1,Wen-yong LI1,Meng-ying WANG1,Si-yue WANG1,Nan LI2,Jing LI3,Zhi-bo ZHOU2,Tao WU1,Hong-ping ZHU2△()
CLC Number:
[1] | Panamonta V, Pradubwong S, Panamonta M , et al. Global birth prevalence of orofacial clefts: a systematic review[J]. J Med Assoc Thai, 2015,98(Suppl 7):S11-S21. |
[2] | Dai L, Zhu J, Mao M , et al. Time trends in oral clefts in Chinese newborns: data from the Chinese National Birth Defects Monitoring Network[J]. Birth Defects Res A Clin Mol Teratol, 2010,88(1):41-47. |
[3] |
Beaty TH, Murray JC, Marazita ML , et al. A genome-wide association study of cleft lip with andwithout cleft palate identifies risk variants near MAFB and ABCA4[J]. Nat Genet, 2010,42(6):525-529.
doi: 10.1038/ng.580 |
[4] |
Mangold E, Ludwig KU, Birnbaum S , et al. Genome-wide association study identifies two susceptibility loci for nonsyndromic cleft lip with or without cleft palate[J]. Nat Genet, 2010,42(1):24-26.
doi: 10.1038/ng.506 |
[5] | Leslie EJ, Carlson JC, Shaffer JR , et al. A multi-ethnic genome-wide association study identifies novel loci for non-syndromic cleft lip with or without cleft palate on 2p24.2, 17q23 and 19q13[J]. Hum Mol Genet, 2016,25(13):2862-2872. |
[6] |
Yu Y, Zuo X, He M , et al. Genome-wide analyses of non-syndromic cleft lip with palate identify 14 novel loci and genetic heterogeneity[J]. Nat Commun, 2017,8:14364-14374.
doi: 10.1038/ncomms14364 |
[7] |
Leslie EJ, Carlson JC, Shaffer JR , et al. Association studies of low-frequency coding variants in nonsyndromic cleft lip with or without cleft palate[J]. Am J Med Genet A, 2017,173(6):1531-1538.
doi: 10.1002/ajmg.a.38210 |
[8] |
Collins FS, Guyer MS, Charkravarti A . Variations on a theme: cataloging human DNA sequence variation[J]. Science, 1997,278(5343):1580-1581.
doi: 10.1126/science.278.5343.1580 |
[9] |
McCarthy MI, Abecasis GR, Cardon LR , et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges[J]. Nat Rev Genet, 2008,9(5):356-369.
doi: 10.1038/nrg2344 |
[10] |
Zuk O, Hechter E, Sunyaev SR , et al. The mystery of missing heritability: Genetic interactions create phantom heritability[J]. Proc Natl Acad Sci USA, 2012,109(4):1193-1198.
doi: 10.1073/pnas.1119675109 |
[11] |
Thisse B, Thisse C . Functions and regulations of fibroblast growth factor signaling during embryonic development[J]. Dev Biol, 2005,287(2):390-402.
doi: 10.1016/j.ydbio.2005.09.011 |
[12] |
Mason JM, Morrison DJ, Basson MA , et al. Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling[J]. Trends Cell Biol, 2006,16(1):45-54.
doi: 10.1016/j.tcb.2005.11.004 |
[13] |
Stanier P, Pauws E . Development of the lip and palate: FGF signalling[J]. Front Oral Biol, 2012,16:71-80.
doi: 10.1159/000337618 |
[14] |
Ludwig KU, Mangold E, Herms S , et al. Genome-wide meta-analyses of nonsyndromic cleft lip with or without cleft palate identify six new risk loci[J]. Nat Genet, 2012,44(9):968-971.
doi: 10.1038/ng.2360 |
[15] | Jia Z, Leslie EJ, Cooper ME , et al. Replication of 13q31.1 association in nonsyndromic cleft lip with cleft palate in Europeans[J]. Am J Med Genet A, 2015,167A(5):1054-1060. |
[16] |
Moreno Uribe LM, Fomina T, Munger RG , et al. A population-based study of effects of genetic loci on orofacial clefts[J]. J Dent Res, 2017,96(11):1322-1329.
doi: 10.1177/0022034517716914 |
[17] |
Ward LD, Kellis M . HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants[J]. Nucleic Acids Res, 2012,40(Database issue):D930-D934.
doi: 10.1093/nar/gkr917 |
[18] |
Iyengar SFarnham PJ . KAP1 protein: an enigmatic master regulator of the genome[J]. J Biol Chem, 2011,286(30):26267-26276.
doi: 10.1074/jbc.R111.252569 |
[19] |
Hacohen N, Kramer S, Sutherland D , et al. sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways[J]. Cell, 1998,92(2):253-263.
doi: 10.1016/S0092-8674(00)80919-8 |
[20] |
Gross I, Bassit B, Benezra M , et al. Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras activation[J]. J Biol Chem, 2001,276(49):46460-46468.
doi: 10.1074/jbc.M108234200 |
[21] |
Impagnatiello MA, Weitzer S, Gannon G , et al. Mammalian sprouty-1 and -2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells[J]. J Cell Biol, 2001,152(5):1087-1098.
doi: 10.1083/jcb.152.5.1087 |
[22] |
Yang X, Kilgallen S, Andreeva V , et al. Conditional expression of Spry1 in neural crest causes craniofacial and cardiac defects[J]. BMC Dev Biol, 2010,10:48-59.
doi: 10.1186/1471-213X-10-48 |
[23] |
Goodnough LH, Brugmann SA, Hu D , et al. Stage-dependent craniofacial defects resulting from Sprouty2 overexpression[J]. Dev Dyn, 2007,236(7):1918-1928.
doi: 10.1002/(ISSN)1097-0177 |
[24] |
Matsumura K, Taketomi T, Yoshizaki K , et al. Sprouty2 controls proliferation of palate mesenchymal cells via fibroblast growth factor signaling[J]. Biochem Biophys Res Commun, 2011,404(4):1076-1082.
doi: 10.1016/j.bbrc.2010.12.116 |
[25] |
Guilmatre A, Sharp AJ . Parent of origin effects[J]. Clin Genet, 2012,81(3):201-209.
doi: 10.1111/cge.2012.81.issue-3 |
[1] | Enci XUE, Xi CHEN, Xueheng WANG, Siyue WANG, Mengying WANG, Jin LI, Xueying QIN, Yiqun WU, Nan LI, Jing LI, Zhibo ZHOU, Hongping ZHU, Tao WU, Dafang CHEN, Yonghua HU. Single nucleotide polymorphism heritability of non-syndromic cleft lip with or without cleft palate in Chinese population [J]. Journal of Peking University (Health Sciences), 2024, 56(5): 775-780. |
[2] | Tianjiao HOU,Zhibo ZHOU,Zhuqing WANG,Mengying WANG,Siyue WANG,Hexiang PENG,Huangda GUO,Yixin LI,Hanyu ZHANG,Xueying QIN,Yiqun WU,Hongchen ZHENG,Jing LI,Tao WU,Hongping ZHU. Gene-gene/gene-environment interaction of transforming growth factor-β signaling pathway and the risk of non-syndromic oral clefts [J]. Journal of Peking University (Health Sciences), 2024, 56(3): 384-389. |
[3] | Meng-ying WANG,Wen-yong LI,Ren ZHOU,Si-yue WANG,Dong-jing LIU,Hong-chen ZHENG,Zhi-bo ZHOU,Hong-ping ZHU,Tao WU,Yong-hua HU. Association study between haplotypes of WNT signaling pathway genes and nonsyndromic oral clefts among Chinese Han populations [J]. Journal of Peking University (Health Sciences), 2022, 54(3): 394-399. |
[4] | Meng-ying WANG,Wen-yong LI,Ren ZHOU,Si-yue WANG,Dong-jing LIU,Hong-chen ZHENG,Jing LI,Nan LI,Zhi-bo ZHOU,Hong-ping ZHU,Tao WU,Yong-hua HU. Evaluating the effect of WNT pathway genes considering interactions on the risk of non-syndromic oral clefts among Chinese populations [J]. Journal of Peking University (Health Sciences), 2020, 52(5): 815-820. |
|