Journal of Peking University (Health Sciences) ›› 2024, Vol. 56 ›› Issue (3): 384-389. doi: 10.19723/j.issn.1671-167X.2024.03.002
Previous Articles Next Articles
Tianjiao HOU1,2,Zhibo ZHOU3,Zhuqing WANG1,Mengying WANG2,4,Siyue WANG1,2,Hexiang PENG1,2,Huangda GUO1,2,Yixin LI1,2,Hanyu ZHANG1,2,Xueying QIN1,2,Yiqun WU1,2,Hongchen ZHENG1,Jing LI5,Tao WU1,2,*(),Hongping ZHU3,*()
CLC Number:
1 |
Awotoye W , Mossey PA , Hetmanski JB , et al. Whole-genome sequencing reveals de-novo mutations associated with nonsyndromic cleft lip/palate[J]. Sci Rep, 2022, 12 (1): 11743.
doi: 10.1038/s41598-022-15885-1 |
2 |
Razaghi-Moghadam Z , Namipashaki A , Farahmand S , et al. Systems genetics of nonsyndromic orofacial clefting provides insights into its complex aetiology[J]. Eur J Hum Genet, 2019, 27 (2): 226- 234.
doi: 10.1038/s41431-018-0263-7 |
3 |
Won HJ , Kim JW , Won HS , et al. Gene regulatory networks and signaling pathways in palatogenesis and cleft palate: A comprehensive review[J]. Cells, 2023, 12 (15): 1954.
doi: 10.3390/cells12151954 |
4 |
Li J , Rodriguez G , Han X , et al. Regulatory mechanisms of soft palate development and malformations[J]. J Dent Res, 2019, 98 (9): 959- 967.
doi: 10.1177/0022034519851786 |
5 | Smane-Filipova L , Pilmane M , Akota I . Immunohistochemical analysis of nestin, CD34 and TGFβ3 in facial tissue of children with complete unilateral and bilateral cleft lip and palate[J]. Stomatologija, 2016, 18 (3): 98- 104. |
6 |
Guo Z , Huang C , Ding K , et al. Transforming growth factor beta-3 and environmental factors and cleft lip with/without cleft palate[J]. DNA Cell Biol, 2010, 29 (7): 375- 380.
doi: 10.1089/dna.2009.1009 |
7 |
Zhang W , Shen Z , Xing Y , et al. MiR-106a-5p modulates apoptosis and metabonomics changes by TGF-β/Smad signaling pathway in cleft palate[J]. Exp Cell Res, 2020, 386 (2): 111734.
doi: 10.1016/j.yexcr.2019.111734 |
8 |
Panetta NJ , Gupta DM , Slater BJ , et al. Tissue engineering in cleft palate and other congenital malformations[J]. Pediatr Res, 2008, 63 (5): 545- 551.
doi: 10.1203/PDR.0b013e31816a743e |
9 |
Tang M , Wang Y , Han S , et al. Transforming growth factor-beta 3 gene polymorphisms and nonsyndromic cleft lip and palate risk: A meta-analysis[J]. Genet Test Mol Biomarkers, 2013, 17 (12): 881- 889.
doi: 10.1089/gtmb.2013.0334 |
10 |
Shi X , Wang Q , Sun C , et al. Study on the role of methylation in nonsyndromic cleft lip with or without cleft palate using a monozygotic twin model[J]. Int J Pediatr Otorhinolaryngol, 2021, 143, 110659.
doi: 10.1016/j.ijporl.2021.110659 |
11 | 王竹青, 王苹, 吴雅慧, 等. 中国人群转化生长因子β信号通路上的基因多态性与非综合征型唇腭裂的关联研究[J]. 北京大学学报(医学版), 2015, 47 (3): 384- 389. |
12 |
Beaty TH , Murray JC , Marazita ML , et al. A genome-wide association study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4[J]. Nat Genet, 2010, 42 (6): 525- 529.
doi: 10.1038/ng.580 |
13 |
Weinberg CR . Methods for detection of parent-of-origin effects in genetic studies of case-parents triads[J]. Am J Hum Genet, 1999, 65 (1): 229- 235.
doi: 10.1086/302466 |
14 |
Mossey PA , Little J , Munger RG , et al. Cleft lip and palate[J]. Lancet, 2009, 374 (9703): 1773- 1785.
doi: 10.1016/S0140-6736(09)60695-4 |
15 |
Lewis CW , Jacob LS , Lehmann CU . The primary care pediatrician and the care of children with cleft lip and/or cleft palate[J]. Pediatrics, 2017, 139 (5): e20170628.
doi: 10.1542/peds.2017-0628 |
16 |
Azevedo CMS , Machado RA , Martelli-Júnior H , et al. Exploring GRHL3 polymorphisms and SNP-SNP interactions in the risk of non-syndromic oral clefts in the Brazilian population[J]. Oral Dis, 2020, 26 (1): 145- 151.
doi: 10.1111/odi.13204 |
17 |
郝嫣汝, 王岩, 孙晓梅. 非综合征性唇腭裂环境因素的研究进展[J]. 中华整形外科杂志, 2019, 35 (7): 702- 705.
doi: 10.3760/cma.j.issn.1009-4598.2019.07.017 |
18 |
Lara LDS , Coletta RD , Assis MR , et al. Exploring the role of the WNT5A rs566926 polymorphism and its interactions in non-syndromic orofacial cleft: A multicenter study in Brazil[J]. J Appl Oral Sci, 2024, 32, e20230353.
doi: 10.1590/1678-7757-2023-0353 |
19 |
Li M , Wang H . Pathway analysis identified a significant association between cell-cell adherens junctions-related genes and non-syndromic cleft lip/palate in 895 Asian case-parent trios[J]. Arch Oral Biol, 2022, 136, 105384.
doi: 10.1016/j.archoralbio.2022.105384 |
20 | Yapijakis C , Davaria S , Gintoni I , et al. The impact of genetic variability of TGF-beta signaling biomarkers in major craniofacial syndromes[J]. Adv Exp Med Biol, 2023, 1423, 187- 191. |
21 |
Saroya G , Hu J , Hu M , et al. Periderm fate during palatogenesis: TGF-β and periderm dedifferentiation[J]. J Dent Res, 2023, 102 (4): 459- 466.
doi: 10.1177/00220345221146454 |
22 |
Derynck R , Budi EH . Specificity, versatility, and control of TGF-β family signaling[J]. Sci Signal, 2019, 12 (570): eaav5183.
doi: 10.1126/scisignal.aav5183 |
23 |
Chen PY , Qin L , Simons M . TGF-β signaling pathways in human health and disease[J]. Front Mol Biosci, 2023, 10, 1113061.
doi: 10.3389/fmolb.2023.1113061 |
24 |
Vander AA , Cao J , Li X . TGF-β receptors: In and beyond TGF-β signaling[J]. Cell Signal, 2018, 52, 112- 120.
doi: 10.1016/j.cellsig.2018.09.002 |
25 |
Hata A , Chen YG . TGF-β signaling from receptors to smads[J]. Cold Spring Harb Perspect Biol, 2016, 8 (9): a022061.
doi: 10.1101/cshperspect.a022061 |
26 |
Lin E , Kuo PH , Liu YL , et al. Transforming growth factor-β signaling pathway-associated genes SMAD2 and TGFBR2 are implicated in metabolic syndrome in a Taiwanese population[J]. Sci Rep, 2017, 7 (1): 13589.
doi: 10.1038/s41598-017-14025-4 |
27 |
Babai A , Irving M . Orofacial clefts: Genetics of cleft lip and palate[J]. Genes (Basel), 2023, 14 (8): 1603.
doi: 10.3390/genes14081603 |
[1] | Enci XUE, Xi CHEN, Xueheng WANG, Siyue WANG, Mengying WANG, Jin LI, Xueying QIN, Yiqun WU, Nan LI, Jing LI, Zhibo ZHOU, Hongping ZHU, Tao WU, Dafang CHEN, Yonghua HU. Single nucleotide polymorphism heritability of non-syndromic cleft lip with or without cleft palate in Chinese population [J]. Journal of Peking University (Health Sciences), 2024, 56(5): 775-780. |
[2] | Meng-ying WANG,Wen-yong LI,Ren ZHOU,Si-yue WANG,Dong-jing LIU,Hong-chen ZHENG,Zhi-bo ZHOU,Hong-ping ZHU,Tao WU,Yong-hua HU. Association study between haplotypes of WNT signaling pathway genes and nonsyndromic oral clefts among Chinese Han populations [J]. Journal of Peking University (Health Sciences), 2022, 54(3): 394-399. |
[3] | Wen-yong LI,Meng-ying WANG,Ren ZHOU,Si-yue WANG,Hong-chen ZHENG,Hong-ping ZHU,Zhi-bo ZHOU,Tao WU,Hong WANG,Bing SHI. Exploring parent-of-origin effects for non-syndromic cleft lip with or without cleft palate on PTCH1, PTCH2, SHH, SMO genes in Chinese case-parent trios [J]. Journal of Peking University (Health Sciences), 2020, 52(5): 809-814. |
[4] | Ren ZHOU,Hong-chen ZHENG,Wen-yong LI,Meng-ying WANG,Si-yue WANG,Nan LI,Jing LI,Zhi-bo ZHOU,Tao WU,Hong-ping ZHU. Exploring the association between SPRY gene family and non-syndromic oral clefts among Chinese populations using data of a next-generation sequencing study [J]. Journal of Peking University(Health Sciences), 2019, 51(3): 564-570. |
|