Journal of Peking University (Health Sciences) ›› 2024, Vol. 56 ›› Issue (3): 375-383. doi: 10.19723/j.issn.1671-167X.2024.03.001
Huangda GUO1,Hexiang PENG1,Siyue WANG1,Tianjiao HOU1,Yixin LI1,Hanyu ZHANG1,Mengying WANG2,3,Yiqun WU1,3,Xueying QIN1,3,Xun TANG1,3,Jing LI1,3,Dafang CHEN1,3,Yonghua HU1,3,Tao WU1,3,*()
CLC Number:
1 |
Xiao D , Sun H , Chen L , et al. Assessment of six surrogate insulin resistance indexes for predicting cardiometabolic multimorbidity incidence in Chinese middle-aged and older populations: Insights from the China health and retirement longitudinal study[J]. Diabetes Metab Res Rev, 2024, 40 (1): e3764.
doi: 10.1002/dmrr.3764 |
2 |
Guerrero-Romero F , Simental-Mendía LE , González-Ortiz M , et al. The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp[J]. J Clin Endocrinol Metab, 2010, 95 (7): 3347- 3351.
doi: 10.1210/jc.2010-0288 |
3 |
Zhang J , Yin B , Xi Y , et al. Triglyceride-glucose index is a risk factor for breast cancer in China: A cross-sectional study[J]. Lipids Health Dis, 2024, 23 (1): 29.
doi: 10.1186/s12944-024-02008-0 |
4 |
Hao B , Lyu L , Xu J , et al. The relationship between triglyceride-glucose index and prospective key clinical outcomes in patients hospitalised for coronary artery disease[J]. Cardiovasc Diabetol, 2024, 23 (1): 40.
doi: 10.1186/s12933-024-02132-2 |
5 |
Su W , Wang J , Chen K , et al. A higher TyG index level is more likely to have enhanced incidence of T2DM and HTN comorbidity in elderly Chinese people: A prospective observational study from the reaction study[J]. Diabetol Metab Syndr, 2024, 16 (1): 29.
doi: 10.1186/s13098-024-01258-3 |
6 | Dong W , Gong Y , Zhao J , et al. A combined analysis of TyG index, SII index, and SIRI index: Positive association with CHD risk and coronary atherosclerosis severity in patients with NAFLD[J]. Front Endocrinol (Lausanne), 2023, 14, 1281839. |
7 |
Peng H , Wang M , Wang S , et al. KCNQ1 rs2237892 polymorphism modify the association between short-term ambient particulate matter exposure and fasting blood glucose: A family-based study[J]. Sci Total Environ, 2023, 876, 162820.
doi: 10.1016/j.scitotenv.2023.162820 |
8 |
Wu Y , Tian Y , Wang M , et al. Short-term exposure to air pollution and its interaction effects with two ABO SNPs on blood lipid levels in northern China: A family-based study[J]. Chemosphere, 2020, 249, 126120.
doi: 10.1016/j.chemosphere.2020.126120 |
9 | Wang S , Wang M , Peng H , et al. Synergism of cell adhesion re-gulatory genes and instant air pollutants on blood pressure elevation[J]. Chemosphere, 2023, 312 (Pt 1): 136992. |
10 | Guo H , Wang M , Ye Y , et al. Short-term exposure to nitrogen dioxide modifies genetic predisposition in blood lipid and fasting plasma glucose: A pedigree-based study[J]. Biology (Basel), 2023, 12 (12): 1470. |
11 |
Pan M , Liu F , Zhang K , et al. Independent and interactive associations between greenness and ambient pollutants on novel glycolipid metabolism biomarkers: A national repeated measurement study[J]. Environ Res, 2023, 233, 116393.
doi: 10.1016/j.envres.2023.116393 |
12 | Liu F , Chen G , Huo W , et al. Associations between long-term exposure to ambient air pollution and risk of type 2 diabetes mellitus: A systematic review and meta-analysis[J]. Environ Pollut, 2019, 252 (Pt B): 1235- 1245. |
13 |
Prokopenko I , Langenberg C , Florez JC , et al. Variants in MTNR1B influence fasting glucose levels[J]. Nat Genet, 2009, 41 (1): 77- 81.
doi: 10.1038/ng.290 |
14 |
Lyssenko V , Nagorny CL , Erdos MR , et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion[J]. Nat Genet, 2009, 41 (1): 82- 88.
doi: 10.1038/ng.288 |
15 |
Prokopenko I , Poon W , Mägi R , et al. A central role for GRB10 in regulation of islet function in man[J]. PLoS Genet, 2014, 10 (4): e1004235.
doi: 10.1371/journal.pgen.1004235 |
16 |
Garaulet M , Lopez-Minguez J , Dashti HS , et al. Interplay of dinner timing and MTNR1B type 2 diabetes risk variant on glucose tolerance and insulin secretion: A randomized crossover trial[J]. Diabetes Care, 2022, 45 (3): 512- 519.
doi: 10.2337/dc21-1314 |
17 | Xu XH , Kou LC , Wang HM , et al. Genetic polymorphisms of melatonin receptors 1A and 1B may result in disordered lipid metabolism in obese patients with polycystic ovary syndrome[J]. Mol Med Rep, 2019, 19 (3): 2220- 2230. |
18 |
Wang M , Wang S , Wang X , et al. Carotid intima-media thickness, genetic risk, and ischemic stroke: A family-based study in rural China[J]. Int J Environ Res Public Health, 2020, 18 (1): 119.
doi: 10.3390/ijerph18010119 |
19 |
Tian Y , Liu H , Zhao Z , et al. Association between ambient air pollution and daily hospital admissions for ischemic stroke: A nationwide time-series analysis[J]. PLoS Med, 2018, 15 (10): e1002668.
doi: 10.1371/journal.pmed.1002668 |
20 |
Zhan M , Li Z , Li X , et al. Effect of short-term ambient PM2.5 exposure on fasting blood glucose levels: A longitudinal study among 47 471 people in eastern China[J]. Environ Pollut, 2021, 290, 117983.
doi: 10.1016/j.envpol.2021.117983 |
21 |
Chen L , Zhou Y , Li S , et al. Air pollution and fasting blood glucose: A longitudinal study in China[J]. Sci Total Environ, 2016, 541, 750- 755.
doi: 10.1016/j.scitotenv.2015.09.132 |
22 |
Chen J , Wu L , Yang G , et al. The influence of PM2.5 exposure on non-alcoholic fatty liver disease[J]. Life Sci, 2021, 270, 119135.
doi: 10.1016/j.lfs.2021.119135 |
23 |
Glencross DA , Ho TR , Camiña N , et al. Air pollution and its effects on the immune system[J]. Free Radic Biol Med, 2020, 151, 56- 68.
doi: 10.1016/j.freeradbiomed.2020.01.179 |
24 |
Peng C , Bind MC , Colicino E , et al. Particulate air pollution and fasting blood glucose in nondiabetic individuals: Associations and epigenetic mediation in the normative aging study, 2000-2011[J]. Environ Health Perspect, 2016, 124 (11): 1715- 1721.
doi: 10.1289/EHP183 |
25 |
Ning R , Li Y , Du Z , et al. The mitochondria-targeted antioxidant MitoQ attenuated PM2.5-induced vascular fibrosis via regulating mitophagy[J]. Redox Biol, 2021, 46, 102113.
doi: 10.1016/j.redox.2021.102113 |
26 |
Sabatti C , Service SK , Hartikainen AL , et al. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population[J]. Nat Genet, 2009, 41 (1): 35- 46.
doi: 10.1038/ng.271 |
27 |
Tuomi T , Nagorny CLF , Singh P , et al. Increased melatonin signaling is a risk factor for type 2 diabetes[J]. Cell Metab, 2016, 23 (6): 1067- 1077.
doi: 10.1016/j.cmet.2016.04.009 |
28 |
Li C , Zhou Y , Qiao B , et al. Association between a melatonin receptor 1b genetic polymorphism and its protein expression in gestational diabetes mellitus[J]. Reprod Sci, 2019, 26 (10): 1382- 1388.
doi: 10.1177/1933719118765983 |
29 |
Garaulet M , Gómez-Abellán P , Rubio-Sastre P , et al. Common type 2 diabetes risk variant in MTNR1B worsens the deleterious effect of melatonin on glucose tolerance in humans[J]. Metabolism, 2015, 64 (12): 1650- 1657.
doi: 10.1016/j.metabol.2015.08.003 |
30 |
Xia AY , Zhu H , Zhao ZJ , et al. Molecular mechanisms of the melatonin receptor pathway linking circadian rhythm to type 2 diabetes mellitus[J]. Nutrients, 2023, 15 (6): 1406.
doi: 10.3390/nu15061406 |
31 |
Dubocovich ML , Delagrange P , Krause DN , et al. International union of basic and clinical pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors[J]. Pharmacol Rev, 2010, 62 (3): 343- 380.
doi: 10.1124/pr.110.002832 |
32 | Mühlbauer E , Albrecht E , Bazwinsky-Wutschke I , et al. Melatonin influences insulin secretion primarily via MT(1) receptors in rat insulinoma cells (INS-1) and mouse pancreatic islets[J]. J Pineal Res, 2012, 52 (4): 446- 459. |
33 |
Stumpf I , Mühlbauer E , Peschke E . Involvement of the cGMP pathway in mediating the insulin-inhibitory effect of melatonin in pancreatic beta-cells[J]. J Pineal Res, 2008, 45 (3): 318- 327.
doi: 10.1111/j.1600-079X.2008.00593.x |
[1] | Shengqi ZHENG,Tianchi HUA,Guicao YIN,Wei ZHANG,Ye YAO,Yifan LI. Association between the triglyceride-glucose index and the incidence of nephrolithiasis in male individuals [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 610-616. |
[2] | CHU Meng-tian, DONG Wei, CHI Rui, PAN Lu, LI Hong-yu, HU Da-yu, YANG Xuan, DENG Fu-rong, GUO Xin-biao. Effects of high-efficiency particulate air purifiers on indoor fine particulate matter and its constituents in a district of Beijing during winter [J]. Journal of Peking University(Health Sciences), 2018, 50(3): 482-487. |
[3] | WU Xiao-yin, LI Guo-xing, WANG Xu-ying, LIANG Feng-chao, PAN Xiao-chuan. Correlation study between respiratory death and airborne particles in Beijing: Spa-tiotemporal analysis based on satellite remote sensing data [J]. Journal of Peking University(Health Sciences), 2017, 49(3): 409-417. |
[4] | ZHANG Yi1, SONG Xiao-ming1, ZHAO Qian, WANG Tong, Li Li-juan, CHEN Jie, XU Hong-bing, LIU Bei-bei, SUN Xiao-yan, HE Bei, HUANG Wei. Effects of exposure to ambient particulate matter and polycyclic aromatic hydrocarbons on oxidative stress biomarkers in the patients with chronic obstructive pulmonary disease [J]. Journal of Peking University(Health Sciences), 2017, 49(3): 394-402. |
[5] | FAN Ai-qin, FENG Jin-qiu, LIU Wei, ZHANG Min-jia, LIU Tan, ZHOU Ya-lin, XU Ya-jun. Antagonistic effect of quercetin on PM2.5 toxicity in the rat’s embryonic development in vitro [J]. Journal of Peking University(Health Sciences), 2017, 49(3): 388-393. |
[6] | YI Tie-Ci, LI Jian-Ping. Adverse effects of ultrafine particles on the cardiovascular system and its mechanisms [J]. Journal of Peking University(Health Sciences), 2014, 46(6): 996-1000. |
[7] | NI Yang, TU Xing-Ying, ZHU Yi-Dan, GUO Xin-Biao, DENG Fu-Rong. Concentrations of fine particulate matters and ultrafine particles and influenced actors during winter in an area of Beijing [J]. Journal of Peking University(Health Sciences), 2014, 46(3): 389-394. |
|