Journal of Peking University (Health Sciences) ›› 2025, Vol. 57 ›› Issue (1): 97-105. doi: 10.19723/j.issn.1671-167X.2025.01.015
Previous Articles Next Articles
Yibo HU1, Weijia LYU2, Wei XIA3, Yihong LIU1,*(
)
CLC Number:
| 1 | Ray S , Nandi SK , Dasgupta S . Enhanced bone regeneration using Antheraea mylitta silk fibroin and chitosan based scaffold: In-vivo and in-vitro study[J]. Biomed Mater, 2023, 18 (5): 10. |
| 2 |
Li Z , Tang S , Shi Z , et al. Multi-scale cellular PLA-based bionic scaffold to promote bone regrowth and repair[J]. Int J Biol Macromol, 2023, 245, 125511.
doi: 10.1016/j.ijbiomac.2023.125511 |
| 3 |
Zhang J , Tong D , Song H , et al. Osteoimmunity-regulating biomimetically hierarchical scaffold for augmented bone regeneration[J]. Adv Mater, 2022, 34 (36): e2202044.
doi: 10.1002/adma.202202044 |
| 4 | 邹运, 韩青, 徐晓麟, 等. 骨科和口腔颌面外科3D打印模型的精度验证和可靠性分析[J]. 吉林大学学报(医学版), 2017, 43 (5): 996- 1001. |
| 5 | 吴其右, 崔博宇, 夏炜, 等. 基于细胞黏附的不同微结构3D打印多孔生物支架流体力学有限元分析[J]. 组织工程与重建外科杂志, 2024, 20 (3): 293- 299. |
| 6 | Luan HQ , Wang LT , Ren WY , et al. The effect of pore size and porosity of Ti6Al4V scaffolds on MC3T3-E1 cells and tissue in rabbits[J]. Sci China Technol Sci, 2019, 62 (7): 9. |
| 7 |
Ma S , Tang Q , Han X , et al. Manufacturability, mechanical properties, mass-transport properties and biocompatibility of triply periodic minimal surface (TPMS) porous scaffolds fabricated by selective laser melting[J]. Mater Des, 2020, 195, 109034.
doi: 10.1016/j.matdes.2020.109034 |
| 8 |
Wu J , Zhang Y , Lyu Y , et al. On the various numerical techniques for the optimization of bone scaffold[J]. Materials (Basel), 2023, 16 (3): 974.
doi: 10.3390/ma16030974 |
| 9 |
Karageorgiou V , Kaplan D . Porosity of 3D biomaterial scaffolds and osteogenesis[J]. Biomaterials, 2005, 26 (27): 5474- 5491.
doi: 10.1016/j.biomaterials.2005.02.002 |
| 10 |
Ouyang P , Dong H , He X , et al. Hydromechanical mechanism behind the effect of pore size of porous titanium scaffolds on osteoblast response and bone ingrowth[J]. Mater Des, 2019, 183, 108151.
doi: 10.1016/j.matdes.2019.108151 |
| 11 |
Tsuruga E , Takita H , Itoh H , et al. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis[J]. J Biochem, 1997, 121 (2): 317- 324.
doi: 10.1093/oxfordjournals.jbchem.a021589 |
| 12 | 王林, 马真胜, 李涤尘, 等. 灌注培养促进人胚成骨细胞在大体积可控微结构支架内的均匀扩增[J]. 中华医学杂志, 2013, 93 (25): 1970- 1974. |
| 13 | 崔越. 3D打印高强度三周期极小曲面羟基磷灰石支架用于骨修复的研究[D]. 广州: 华南理工大学, 2021. |
| 14 | Ali D , Ozalp M , Blanquer SBG , et al. Permeability and fluid flow-induced wall shear stress in bone scaffolds with TPMS and lattice architectures: A CFD analysis[J]. Euromech Fluids, 2020, 79, 376- 385. |
| 15 |
Prakoso AT , Basri H , Adanta D , et al. The effect of tortuosity on permeability of porous scaffold[J]. Biomedicines, 2023, 11 (2): 427.
doi: 10.3390/biomedicines11020427 |
| 16 |
Porter B , Zauel R , Stockman H , et al. 3D computational mode-ling of media flow through scaffolds in a perfusion bioreactor[J]. J Biomech, 2005, 38 (3): 543- 549.
doi: 10.1016/j.jbiomech.2004.04.011 |
| 17 |
Pires T , Santos J , Ruben RB , et al. Numerical-experimental analysis of the permeability-porosity relationship in triply periodic minimal surfaces scaffolds[J]. J Biomech, 2021, 117, 110263.
doi: 10.1016/j.jbiomech.2021.110263 |
| 18 | 王真. 羟基磷灰石多孔骨支架的光固化制备工艺及力学与生物学性能研究[D]. 济南: 山东大学, 2020. |
| 19 | Zhu T , Cui Y , Zhang M , et al. Engineered three-dimensional scaffolds for enhanced bone regeneration in osteonecrosis[J]. Bioact Mater, 2020, 5 (3): 584- 601. |
| 20 | 姜至秀, 季俣辰, 刘丹瑜, 等. Gyroid结构钛仿生骨支架修复下颌骨节段性缺损的生物力学性能[J]. 中国组织工程研究, 2025, 29 (22): 4621- 4628. |
| 21 | Chan SW, Jusoh N, Abdul SA. Effect of fluid properties on bone scaffold permeability[C/OL]// 4th International Conference for Innovation in Biomedical Engineering and Life Sciences, 2022. (2024-03-22)[2024-06-26]. https://doi.org/10.1007/978-3-031-56438-3_3. |
| 22 |
Prakoso AT , Basri H , Adanta D , et al. The effect of tortuosity on permeability of porous scaffold[J]. Biomedicines, 2023, 11 (2): 427.
doi: 10.3390/biomedicines11020427 |
| 23 | 张传辉, 李建军, 杨军. 动态压力对负载胰岛素样生长因子1基因兔脂肪间充质干细胞增殖能力和机械性能的影响[J]. 中国组织工程研究, 2021, 25 (13): 6. |
| 24 | 熊婉琦, 李振豪, 崔焱, 等. 生物力学作用对成骨细胞生物特性的影响[J]. 中国组织工程研究, 2024, 28 (21): 3407- 3412. |
| 25 | Chen X , Guo J , Yuan Y , et al. Cyclic compression stimulates osteoblast differentiation via activation of the Wnt/β-catenin signaling pathway[J]. Mol Med Rep, 2017, 15 (5): 2890- 2896. |
| 26 | Yu W , Qu H , Hu G , et al. A microfluidic-based multi-shear device for investigating the effects of low fluid-induced stresses on osteoblasts[J]. PLoS One, 2014, 9 (2): e89966. |
| 27 | Pfister C , Bozsak C , Wolf P , et al. Cell shape-dependent shear stress on adherent cells in a micro-physiologic system as revealed by FEM[J]. Physiol Meas, 2015, 36 (5): 955- 966. |
| [1] | Ting SHUAI, Yanyan GUO, Chunping LIN, Xiaomei HOU, Chanyuan JIN. Knockdown of NPTX1 promotes osteogenic differentiation of human bone marrow mesenchymal stem cells [J]. Journal of Peking University (Health Sciences), 2025, 57(1): 7-12. |
| [2] | Meng-en OU,Yun DING,Wei-feng TANG,Yong-sheng ZHOU. Three-dimensional finite element analysis of cement flow in abutment margin-crown platform switching [J]. Journal of Peking University (Health Sciences), 2023, 55(3): 548-552. |
| [3] | Wei ZHOU,Jin-gang AN,Qi-guo RONG,Yi ZHANG. Three-dimensional finite element analysis of traumatic mechanism of mandibular symphyseal fracture combined with bilateral intracapsular condylar fractures [J]. Journal of Peking University (Health Sciences), 2021, 53(5): 983-989. |
| [4] | Shuang REN,Hui-juan SHI,Jia-hao ZHANG,Zhen-long LIU,Jia-yi SHAO,Jing-xian ZHU,Xiao-qing HU,Hong-shi HUANG,Ying-fang AO. Finite element analysis of the graft stresses after anterior cruciate ligament reconstruction [J]. Journal of Peking University (Health Sciences), 2021, 53(5): 865-870. |
| [5] | JIANG You-sheng,FENG Lin,GAO Xue-jun. Influence of base materials on stress distribution in endodontically treated maxillary premolars restored with endocrowns [J]. Journal of Peking University (Health Sciences), 2021, 53(4): 764-769. |
| [6] | Chun-ping LIN,Song-he LU,Jun-xin ZHU,Hong-cheng HU,Zhao-guo YUE,Zhi-hui TANG. Influence of thread shapes of custom-made root-analogue implants on stress distribution of peri-implant bone: A three-dimensional finite element analysis [J]. Journal of Peking University(Health Sciences), 2019, 51(6): 1130-1137. |
| [7] | Jia-hao ZHANG,Shuang REN,Jia-yi SHAO,Xing-yue NIU,Xiao-qing HU,Ying-fang AO. Anatomical and finite element analysis of anterior cruciate ligament reconstruction within biomechanical insertion [J]. Journal of Peking University(Health Sciences), 2019, 51(3): 586-590. |
| [8] | Hong-yu FU,Fang-fang WANG,Xiao-mei HOU. Construction and mechanical analysis of finite element model for bending property of controlled memory wire nickel-titanium rotary file [J]. Journal of Peking University(Health Sciences), 2019, 51(1): 131-135. |
| [9] | Xia LIU,Ying ni LI,Xiao li SUN,Qing lin PENG,Xin LU,Guo chun WANG. Effects of integrin metalloproteinases on osteogenic differentiation [J]. Journal of Peking University(Health Sciences), 2018, 50(6): 962-967. |
| [10] | . Stress change of periodontal ligament of the anterior teeth at the stage of space closure in lingual appliances: a 3-dimensional finite element analysis [J]. Journal of Peking University(Health Sciences), 2018, 50(1): 141-147. |
| [11] | ZHAO Xu, ZHANG Lei, SUN Jian, YANG Zhen-yu, XIE Qiu-fei. Three-dimensional finite element analysis of influence of occlusal surface height on stress distribution around posterior implant-supported single crown [J]. Journal of Peking University(Health Sciences), 2016, 48(1): 94-100. |
| [12] | ZHEN Min, HU Wen-jie, RONG Qi-guo. Finite element analysis of the maxillary central incisor with crown lengthening surgery and post-core restoration in management of crown-root fracture [J]. Journal of Peking University(Health Sciences), 2015, 47(6): 1015-1021. |
| [13] | ZHOU Tuan-Feng, ZHANG Xiang-Hao, WANG Xin-Zhi. Three-dimensional finite element analysis of one-piece computer aided design and computer aided manufacture involved zirconia post and core [J]. Journal of Peking University(Health Sciences), 2015, 47(1): 78-84. |
| [14] | YANG Xue, RONG Qi-Guo, YANG Ya-Dong. Influence of attachment type on stress distribution of implant-supported removable partial dentures [J]. Journal of Peking University(Health Sciences), 2015, 47(1): 72-77. |
|
||