Journal of Peking University (Health Sciences) ›› 2025, Vol. 57 ›› Issue (6): 1153-1159. doi: 10.19723/j.issn.1671-167X.2025.06.020

Previous Articles     Next Articles

Association between indicators of arterial stiffness and all-cause mortality and cardiovascular deaths: A prospective cohort study

Meng FAN1, Mengying WANG1, Siyue WANG1, Hexiang PENG1, Xueheng WANG1, Huangda GUO1, Tianjiao HOU1, Xueying QIN1, Dafang CHEN1, Yonghua HU1, Jin LI1, Yiqun WU1, Tao WU1,2,*()   

  1. 1. Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
    2. Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, China
  • Received:2023-03-02 Online:2025-12-18 Published:2025-11-07
  • Contact: Tao WU
  • Supported by:
    the National Natural Science Foundation of China(82204135); Beijing Municipal Natural Science Foundation(7232237); China Postdoctoral Science Foundation(BX2021021); China Postdoctoral Science Foundation(2022M710249)

RICH HTML

  

Abstract:

Objective: To assess the associations between brachial-ankle pulse wave velocity (baPWV), ankle brachial index (ABI) and all-cause and cardiovascular mortality in a rural population in north China. Methods: The current study utilized the baseline data of Beijing Fangshan family cohort study and the data of the death surveillance system of the Beijing Fangshan District Center for Disease Prevention and Control. The main outcomes were all-cause mortality and cardiovascular mortality. Cardiovascular deaths which included deaths from coronary heart disease (CHD), stroke, heart failure, sudden cardiac death and arrhythmia, were coded according to the International Classification of Diseases, Ninth Revision (ICD-9) and Tenth Revision (ICD-10). The R4.2.2 software was used for statistical analysis, and the adjusted hazard ratios (HR) for all-cause and CVD mortality associated with baPWV and ABI were calculated using Cox proportional hazards regressions with shared frailty models. Results: A total of 7 686 participants were followed up for a median of 6.35 years in Fangshan District, Beijing, China. Totally 576 deaths were identified, with a mortality density of 11.88/1 000 person-years, of which 335 deaths were from cardiovascular diseases. We found that baPWV (HR=1.40, 95%CI: 1.02-1.92) and ABI (HR=3.32, 95%CI: 2.57-4.28) were associated with all-cause mortality after adjusting for confounding factors. ABI was more strongly associated with cardiovascular mortality than baPWV. There was no significant difference in the risk of all-cause mortality among different subgroups. The risk of cardiovascular mortality was significantly increased in the participants with hypertension (HR=1.72, 95%CI: 1.30-2.27). Conclusion: baPWV and ABI were associated with all-cause and cardiovascular mortality in a rural population of north China. The association of ABI and cardiovascular mortality was more significant than that of baPWV. And abnormal baPWV or ABI was associated with cardiovascular mortality, especially in people with hypertension.

Key words: Arterial stiffness, Pulse wave velocity, Ankle brachial index, Mortality, Cohort studies

CLC Number: 

  • R181.32

Table 1

Baseline characteristics of the participants"

Variables First quartile group
(n=1 914)
Second quartile group
(n=1 927)
Third quartile group
(n=1 923)
Fourth quartile group
(n=1 922)
P value
Age/years, ${\bar x}$±s 50.51±10.15 56.82±8.73 58.12±9.60 63.96±8.65 < 0.001
Male, n(%) 892 (46.60) 977 (50.70) 982 (51.07) 859 (44.69) < 0.001
Education level, n(%) < 0.001
  Primary school or below 512 (26.75) 726 (37.68) 811 (42.17) 1 101 (57.28)
  Junior high school or more 1 402 (73.25) 1 201 (62.32) 1 112 (57.83) 821 (42.72)
Smoking status, n(%) < 0.001
  Never 1 139 (59.51) 1 049 (54.44) 1 003 (52.16) 1 040 (54.11)
  Former smoker 203 (10.61) 291 (15.10) 298 (15.50) 383 (19.93)
  Current smoker 572 (29.89) 587 (30.46) 622 (32.35) 499 (25.96)
Drinking status, n(%) < 0.001
  Never 1 268 (66.25) 1 209 (62.74) 1 243 (64.64) 1 271 (66.13)
  Former drinker 115 (6.01) 174 (9.03) 173 (9.00) 180 (9.37)
  Current drinker 531 (27.74) 544 (28.23) 507 (26.37) 471 (24.51)
Exercise status (regularly), n(%) 256 (13.38) 261 (13.54) 120 (6.24) 189 (9.83) < 0.001
BMI/(kg/m2), ${\bar x}$±s 26.22±3.72 26.34±3.61 26.26±3.58 25.73±3.46 0.004
LDL-C/(mmol/L), ${\bar x}$±s 2.21±0.80 2.24±0.92 2.60±0.88 2.30±0.97 < 0.001
HDL-C/(mmol/L), ${\bar x}$±s 0.98±0.32 0.92±0.33 1.19±0.47 0.93±0.33 < 0.001
TG/(mmol/L), M (P25, P75) 1.18 (0.77, 1.77) 1.26 (0.83, 1.87) 1.47 (0.94, 2.16) 1.31 (0.86, 2.02) < 0.001
Diabetes mellitus, n(%) 558 (29.15) 818 (42.45) 696 (36.19) 1 029 (53.54) < 0.001
Hypertension, n(%) 778 (40.65) 1 367 (70.94) 1 505 (78.26) 1 736 (90.32) < 0.001
CHD, n(%) 441 (23.04) 563 (29.22) 337 (17.52) 727 (37.83) < 0.001
Stroke, n(%) 387 (20.22) 669 (34.72) 694 (36.09% 901 (46.88) < 0.001

Table 2

Cox regression analysis of the relationship between baPWV and the risk of death"

Variables First quartile group Second quartile group Third quartile group Fourth quartile group Continuous
All-cause
  Model 1 Reference 0.78 (0.56-1.10) 1.17 (0.86-1.60) 1.78 (1.32-2.40) 0.74 (0.70-0.79)
  Model 2 Reference 0.78 (0.55-1.09) 1.14 (0.83-1.55) 1.77 (1.31-2.39) 0.75 (0.71-0.79)
  Model 3 Reference 0.67 (0.48-0.96) 1.05 (0.76-1.46) 1.40 (1.02-1.92) 0.77 (0.72-0.81)
CVD
  Model 1 Reference 0.96 (0.61-1.51) 1.42 (0.93-2.15) 1.77 (1.17-2.67) 0.67 (0.62-0.72)
  Model 2 Reference 0.94 (0.59-1.48) 1.33 (0.87-2.03) 1.74 (1.15-2.64) 0.67 (0.62-0.72)
  Model 3 Reference 0.76 (0.47-1.21) 1.10 (0.71-1.72) 1.22 (0.79-1.88) 0.69 (0.64-0.75)

Table 3

Cox regression analysis of the relationship between ABI and the risk of death"

Variables Group 1 Group 2 Group 3 Continuous
All-cause
  Model 1 Reference 1.45 (1.07-1.99) 3.82 (2.99-4.88) 0.74 (0.70-0.79)
  Model 2 Reference 1.44 (1.05-1.97) 3.72 (2.90-4.77) 0.75 (0.71-0.79)
  Model 3 Reference 1.39 (1.02-1.91) 3.32 (2.57-4.28) 0.77 (0.72-0.81)
CVD
  Model 1 Reference 1.60 (1.06-2.40) 5.16 (3.77-7.06) 0.67 (0.62-0.72)
  Model 2 Reference 1.56 (1.03-2.36) 4.91 (3.58-6.74) 0.67 (0.62-0.72)
  Model 3 Reference 1.50 (0.99-2.28) 4.29 (3.09-5.94) 0.69 (0.64-0.75)

Table 4

Cox regression analysis of the relationship between the combined values of baPWV and ABI and the risk of death"

Variables ABI≥0.91 ABI≤0.90
All-cause
  baPWV < 1 800 cm/s Reference 3.67 (2.53-5.31)
  baPWV≥1 800 cm/s 1.62 (1.31-2.00) 4.76 (3.39-6.68)
CVD
  baPWV < 1 800 cm/s Reference 4.95 (3.14-7.79)
  baPWV≥1 800 cm/s 1.29 (0.97-1.72) 4.68 (2.97-7.36)

Table 5

The association between abnormal baPWV or ABI in different subgroups and the risk of death"

Variables All-cause mortality CVD mortality
HR (95%CI) P for interaction HR (95%CI) P for interaction
Age 0.489 0.734
   < 60 years 2.41 (1.67-3.48) 2.28 (1.43-3.64)
  ≥60 years 2.19 (1.75-2.75) 1.98 (1.47-2.66)
Sex 0.225 0.541
  Female 1.71 (1.25-2.33) 1.47 (0.96-2.23)
  Male 1.97 (1.53-2.55) 1.79 (1.28-2.49)
Smoking 0.568 0.415
  Never 2.22 (1.63-3.02) 1.85 (1.22-2.82)
  Former+Current 1.67 (1.31-2.14) 1.56 (1.10-2.19)
Drinking 0.138 0.512
  Never 1.96 (1.51-2.56) 1.85 (1.32-2.61)
  Former+Current 1.75 (1.30-2.37) 1.37 (0.91-2.07)
Obesity (BMI≥28 kg/m2) 0.417 0.434
  No 1.95 (1.56-2.44) 1.70 (1.26-2.30)
  Yes 1.90 (1.26-2.87) 1.66 (0.99-2.80)
Hypertension 0.193 0.505
  No 1.96 (1.17-3.27) 1.75 (0.85-3.59)
  Yes 1.90 (1.54-2.35) 1.72 (1.30-2.27)
Diabetes mellitus 0.256 0.481
  No 2.01 (1.54-2.61) 1.92 (1.31-2.81)
  Yes 1.84 (1.39-2.45) 2.53 (1.06-2.20)
1
王显, 赵建功, 胡大一. 中国脉搏波传导速度评价动脉硬化的参数及流行病学研究[J]. 中国康复理论与实践, 2008, 14 (4): 303- 306.
2
窦可建, 叶继伦, 张旭, 等. 动脉硬化检测方法进展及应用现状[J]. 中国医疗器械杂志, 2020, 44 (1): 47- 50.
3
蔡菁菁, 陆瑶. 脉搏波传导速度检测用于早期血管衰老评价的中国专家共识[J]. 中华高血压杂志, 2021, 29 (12): 1168- 1172.
4
Laurent S , Cockcroft J , Van Bortel L , et al. Expert consensus document on arterial stiffness: Methodological issues and clinical applications[J]. Eur Heart J, 2006, 27 (21): 2588- 2605.

doi: 10.1093/eurheartj/ehl254
5
Yamashina A , Tomiyama H , Takeda K , et al. Validity, reprodu-cibility, and clinical significance of noninvasive brachial-ankle pulse wave velocity measurement[J]. Hypertens Res, 2002, 25 (3): 359- 364.

doi: 10.1291/hypres.25.359
6
Aboyans V , Criqui MH , Abraham P , et al. Measurement and interpretation of the ankle-brachial index: A scientific statement from the American Heart Association[J]. Circulation, 2012, 126 (24): 2890- 2909.

doi: 10.1161/CIR.0b013e318276fbcb
7
Lin CC , Li CI , Liu CS , et al. Prediction of all-cause and cardiovascular mortality using ankle-brachial index and brachial-ankle pulse wave velocity in patients with type 2 diabetes[J]. Sci Rep, 2022, 12 (1): 11053.

doi: 10.1038/s41598-022-15346-9
8
Laurent S , Boutouyrie P , Asmar R , et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients[J]. Hypertension, 2001, 37 (5): 1236- 1241.

doi: 10.1161/01.HYP.37.5.1236
9
Maeda Y , Inoguchi T , Etoh E , et al. Brachial-ankle pulse wave velocity predicts all-cause mortality and cardiovascular events in patients with diabetes: The Kyushu Prevention Study of Atherosclerosis[J]. Diabetes Care, 2014, 37 (8): 2383- 2390.

doi: 10.2337/dc13-1886
10
Miyano I , Nishinaga M , Takata J , et al. Association between brachial-ankle pulse wave velocity and 3-year mortality in community-dwelling older adults[J]. Hypertens Res, 2010, 33 (7): 678- 682.

doi: 10.1038/hr.2010.56
11
Turin TC , Kita Y , Rumana N , et al. Brachial-ankle pulse wave velocity predicts all-cause mortality in the general population: Findings from the Takashima study, Japan[J]. Hypertens Res, 2010, 33 (9): 922- 925.

doi: 10.1038/hr.2010.103
12
Sang T , Lv N , Dang A , et al. Brachial-ankle pulse wave velocity and prognosis in patients with atherosclerotic cardiovascular di-sease: A systematic review and meta-analysis[J]. Hypertens Res, 2021, 44 (9): 1175- 1185.

doi: 10.1038/s41440-021-00678-2
13
Hsu PC , Lee WH , Tsai WC , et al. Comparison between estimated and brachial-ankle pulse wave velocity for cardiovascular and overall mortality prediction[J]. J Clin Hypertens (Greenwich), 2021, 23 (1): 106- 113.

doi: 10.1111/jch.14124
14
王梦莹, 唐迅, 秦雪英, 等. 北方农村地区居民常见慢性非传染性疾病的家系队列研究进展[J]. 中华流行病学杂志, 2018, 39 (1): 94- 97.
15
孙可欣, 刘志科, 曹亚英, 等. 北京某社区2型糖尿病患者血糖控制情况与肱踝脉搏波传导速度的相关性研究[J]. 北京大学学报(医学版), 2015, 47 (3): 431- 436.
16
黄哲, 许蓓蓓, 王小文, 等. 2型糖尿病患者肥胖状态与肱踝脉搏波传导速度的相关性[J]. 中华疾病控制杂志, 2019, 23 (9): 1086- 1091.
17
Tanaka A , Tomiyama H , Maruhashi T , et al. Physiological diagnostic criteria for vascular failure[J]. Hypertension, 2018, 72 (5): 1060- 1071.

doi: 10.1161/HYPERTENSIONAHA.118.11554
18
同步四肢血压和臂踝脉搏波速度测量临床应用中国专家共识[J]. 中国循环杂志[J]. 中国循环杂志, 2020, 35 (6): 521- 528.
19
Arnett DK , Blumenthal RS , Albert MA , et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: A report of the American College of Cardiology/American Heart Asso-ciation task force on clinical practice guidelines[J]. Circulation, 2019, 140 (11): e596- e646.
20
Gu X , Man C , Zhang H , et al. High ankle-brachial index and risk of cardiovascular or all-cause mortality: A meta-analysis[J]. Atherosclerosis, 2019, 282, 29- 36.

doi: 10.1016/j.atherosclerosis.2018.12.028
21
Wang M , Wu T , Yu C , et al. Association between blood pressure levels and cardiovascular deaths: A 20-year follow-up study in rural China[J]. BMJ Open, 2020, 10 (2): e035190.

doi: 10.1136/bmjopen-2019-035190
22
Kim TN , Park MS , Yang SJ , et al. Body size phenotypes and low muscle mass: The Korean sarcopenic obesity study (KSOS)[J]. J Clin Endocrinol Metab, 2013, 98 (2): 811- 817.

doi: 10.1210/jc.2012-3292
23
Lewington S , Lacey B , Clarke R , et al. The burden of hypertension and associated risk for cardiovascular mortality in China[J]. JAMA Intern Med, 2016, 176 (4): 524- 532.

doi: 10.1001/jamainternmed.2016.0190
24
Zhang A , Liu Y , Ma S , et al. Effects of ankle-brachial index and brachial-ankle pulse wave velocity on all-cause mortality in a community-based elderly population[J]. Front Cardiovasc Med, 2022, 9, 883651.

doi: 10.3389/fcvm.2022.883651
25
桑大森, 吴寿岭, 张旗. 臂踝脉搏波传导速度与全因死亡的关系[J]. 中国循证心血管医学杂志, 2022, 14 (4): 488- 492.
26
Nie F , He J , Cao H , et al. Predictive value of abnormal ankle-brachial index in patients with diabetes: A meta-analysis[J]. Diabetes Res Clin Pract, 2021, 174, 108723.

doi: 10.1016/j.diabres.2021.108723
27
Aiumtrakul N , Supasyndh O , Krittayaphong R , et al. Ankle-brachial index predicts renal outcomes and all-cause mortality in high cardiovascular risk population: A nationwide prospective cohort study in CORE project[J]. Int Urol Nephrol, 2022, 54 (7): 1641- 1652.

doi: 10.1007/s11255-021-03049-5
28
李觉, 李宪凯, 罗盈怡, 等. 女性多重动脉硬化患者踝臂指数与全因死亡和心血管疾病死亡关系的群组研究[J]. 中国实用内科杂志, 2007, 27 (9): 662- 665.
29
Chang LH , Lin HD , Kwok CF , et al. The combination of the ankle brachial index and brachial ankle pulse wave velocity exhibits a superior association with outcomes in diabetic patients[J]. Intern Med, 2014, 53 (21): 2425- 2431.

doi: 10.2169/internalmedicine.53.2999
30
Boutouyrie P , Chowienczyk P , Humphrey JD , et al. Arterial stiffness and cardiovascular risk in hypertension[J]. Circ Res, 2021, 128 (7): 864- 886.

doi: 10.1161/CIRCRESAHA.121.318061
[1] Chang LIU, Zhao LI, Lei JIN, Chunyi LIU, Chunjing WANG, Jie ZHANG, Lei JIN. Association between maternal periconceptional supplementation of folic acid or multiple micronutrients containing folic acid and perinatal mortality rate [J]. Journal of Peking University (Health Sciences), 2025, 57(3): 473-480.
[2] Shuo ZHANG, Yongbing LAN, Dianjianyi SUN, Pei PEI, Huaidong DU, Junshi CHEN, Zhengming CHEN, Jun LV, Liming LI, Canqing YU, (for the China Kadoorie Biobank Collaborative Group). Prospective association between physical activity and mortality in patients with chronic obstructive pulmonary disease [J]. Journal of Peking University (Health Sciences), 2025, 57(3): 537-544.
[3] Yuxin WANG, Ru CAO, Jing HUANG, Ponsawansong Pitakchon, Tawatsupa Benjawan, Xiaochuan PAN, Prapamontol Tippawan, Guoxing LI. Impact of fine particulate matter exposure on non-accidental mortality under different apparent temperature levels [J]. Journal of Peking University (Health Sciences), 2024, 56(5): 820-827.
[4] Xiaoqiang LIU,Yin ZHOU. Risk factors of perioperative hypertension in dental implant surgeries with bone augmentation [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 93-98.
[5] Xue-heng WANG,Si-yue WANG,He-xiang PENG,Meng FAN,Huang-da GUO,Tian-jiao HOU,Meng-ying WANG,Yi-qun WU,Xue-ying QIN,Xun TANG,Jin LI,Da-fang CHEN,Yong-hua HU,Tao WU. Genotype-environment interaction on arterial stiffness: A pedigree-based study [J]. Journal of Peking University (Health Sciences), 2023, 55(3): 400-407.
[6] Ya-nan ZHAO,Hui-yun FAN,Xiang-yu WANG,Ya-nan LUO,Rong ZHANG,Xiao-ying ZHENG. Early death and causes of death of patients with autism spectrum disorders: A systematic review [J]. Journal of Peking University (Health Sciences), 2023, 55(2): 375-383.
[7] Tao MA,Yan-hui LI,Man-man CHEN,Ying MA,Di GAO,Li CHEN,Qi MA,Yi ZHANG,Jie-yu LIU,Xin-xin WANG,Yan-hui DONG,Jun MA. Associations between early onset of puberty and obesity types in children: Based on both the cross-sectional study and cohort study [J]. Journal of Peking University (Health Sciences), 2022, 54(5): 961-970.
[8] Yun-fei LIU,Jia-jia DANG,Pan-liang ZHONG,Ning MA,Di SHI,Yi SONG. Injury mortality among Chinese aged 5 to 24 years from 1990 to 2019 [J]. Journal of Peking University (Health Sciences), 2022, 54(3): 498-504.
[9] LIU Jie,GUO Chao. A prospective cohort study of the influence of positive/negative effectivity on the mortality risk of the Chinese elderly [J]. Journal of Peking University (Health Sciences), 2022, 54(2): 255-260.
[10] LIU Xiao-qiang,YANG Yang,ZHOU Jian-feng,LIU Jian-zhang,TAN Jian-guo. Blood pressure and heart rate changes of 640 single dental implant surgeries [J]. Journal of Peking University (Health Sciences), 2021, 53(2): 390-395.
[11] Huan LIU,Ying-dong HE,Jin-bo LIU,Wei HUANG,Na ZHAO,Hong-wei ZHAO,Xiao-hua ZHOU,Hong-yu WANG. Predictive value of vascular health indicators on newly cardiovascular events: Preliminary validation of Beijing vascular health stratification system [J]. Journal of Peking University (Health Sciences), 2020, 52(3): 514-520.
[12] Wen TANG,Jun-yi GAO,Xin-yu MA,Chao-he ZHANG,Lian-tao MA,Ya-sha WANG. Application of recurrent neural network in prognosis of peritoneal dialysis [J]. Journal of Peking University(Health Sciences), 2019, 51(3): 602-608.
[13] YANG Chao, WANG Jin-wei, YANG Yao-zheng, BAI Kun-hao, GAO Bi-xia, ZHAO Ming-hui, ZHANG Lu-xia, WU Shou-ling, WANG Fang. Impact of anemia and chronic kidney disease on the risk of cardiovascular disease and all-cause mortality among diabetic patients [J]. Journal of Peking University(Health Sciences), 2018, 50(3): 495-500.
[14] LIN Ke, XIE Jun-qing, HU Yong-hua, KONG Gui-lan. Application of support vector machine in predicting in-hospital mortality risk of patients with acute kidney injury in ICU [J]. Journal of Peking University(Health Sciences), 2018, 50(2): 239-244.
[15] SUN Ke-Xin, LIU Zhi, CAO Ya-Ying, JUAN Juan, XIANG Xiao, YANG Cheng, HUANG Shao-Ping, LIU Xiao-Fen, LI Na, TANG Xun, LI Jin, WU Tao, CHEN Da-Fang, HU Yong-Hua- . Relationship between brachial-ankle pulse wave velocity and glycemic control of type 2 diabetes mellitus patients in Beijing community population [J]. Journal of Peking University(Health Sciences), 2015, 47(3): 431-436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!