北京大学学报(医学版) ›› 2025, Vol. 57 ›› Issue (1): 26-32. doi: 10.19723/j.issn.1671-167X.2025.01.005

• 论著 • 上一篇    下一篇

LncRNA SNHG20靶向调控miR-520c-3p/RAB22A通路对人口腔鳞状细胞癌细胞上皮间质转化及微管形成的影响

马民英, 晁晓芹, 赵扬, 赵国廷*()   

  1. 青海省第五人民医院,青海省肿瘤医院口腔科,西宁 810001
  • 收稿日期:2024-08-27 出版日期:2025-02-18 发布日期:2025-01-25
  • 通讯作者: 赵国廷 E-mail:594466635@qq.com

Effects of LncRNA SNHG20 on epithelial mesenchymal transition and microtubule formation in human oral squamous cell carcinoma cells through targeted regulation of the miR-520c-3p/RAB22A pathway

Minying MA, Xiaoqin CHAO, Yang ZHAO, Guoting ZHAO*()   

  1. Department of Stomatology, The Fifth People's Hospital of Qinghai Province & Qinghai Cancer Hospital, Xining 810001, China
  • Received:2024-08-27 Online:2025-02-18 Published:2025-01-25
  • Contact: Guoting ZHAO E-mail:594466635@qq.com

RICH HTML

  

摘要:

目的: 探究LncRNA SNHG20靶向调控miR-520c-3p/RAB22A通路对人口腔鳞状细胞癌(oral squamous cell carcinoma,OSCC)细胞上皮间质转化(epithelial-mesenchymal transition,EMT)及微管形成的影响。方法: 检测OSCC细胞及组织中LncRNA SNHG20、miR-520c-3p、RAB22A mRNA水平及其相互间关系。将OSCC细胞分为对照组、sh-NC组、sh-SNHG20组、sh-SNHG20+anti-NC组、sh-SNHG20+anti-miR-520c-3p组, 检测OSCC细胞EMT蛋白表达,检测微管形成数量变化,裸鼠成瘤实验检测LncRNA SNHG20对OSCC肿瘤生长的影响。结果: OSCC组织和细胞中LncRNA SNHG20、RAB22A mRNA上调表达,miR-520c-3p下调表达(P < 0.05);LncRNA SNHG20与miR-520c-3p、RAB22A与miR-520c-3p之间均有结合位点;与sh-NC组相比,sh-SNHG20组间质样细胞数量较少,上皮样细胞数量较多,微管结构不完整且结节数量较少,LncRNA SNHG20、RAB22A、N-cadherin、vimentin下调表达,miR-520c-3p、E-cadherin上调表达(P < 0.05);与sh-SNHG20+anti-NC组相比,sh-SNHG20+anti-miR-520c-3p组间质样细胞数量较多,上皮样细胞数量较少,微管排列较紧密,微管结节数量较多,miR-520c-3p、E-cadherin下调表达,RAB22A、N-cadherin、vimentin上调表达(P < 0.05)。sh-SNHG20组比sh-NC组OSCC移植瘤体积较小,质量较低,LncRNA SNHG20、RAB22A下调表达,miR-520c-3p上调表达(P < 0.05)。结论: 抑制LncRNA SNHG20表达能够靶向调节miR-520c-3p/RAB22A通路抑制OSCC细胞EMT和微管形成。

关键词: 口腔鳞状细胞癌, 小核仁RNA宿主基因20, 微小RNA-520c-3p, Rab蛋白22a, 上皮间质转化, 微管形成

Abstract:

Objective: To investigate the effects of LncRNA SNHG20 on epithelial mesenchymal transition (EMT) and microtubule formation in human oral squamous cell carcinoma (OSCC) cells through targeted regulation of the miR-520c-3p/RAB22A pathway. Methods: After real-time fluorescence quantitative detection of LncRNA SNHG20, miR-520c-3p, RAB22A mRNA expression levels in OSCC tissues and cells, dual luciferase reporter assay was used to detect the relationship between the three. OSCC cells were randomly separated into control group, sh-NC group, sh-SNHG20 group, sh-SNHG20+anti NC group, and sh-SNHG20+anti miR-520c-3p group. Western blotting was used to detect the expression of N-cadherin, vimentin, and E-cadherin proteins in the OSCC cells. The morphology of HSC-3 cells was observed under microscope. Changes in the number of microtubules formed were detected. The effect of LncRNA SNHG20 on the growth of OSCC tumors and the expression levels of LncRNA SNHG20, miR-520c-3p and RAB22 A in the transplanted tumors were detected by nude mice tumorigenesis experiment. Results: LncRNA SNHG20 and RAB22A mRNA were upregulated in the OSCC tissues and cells, while miR-520c-3p was downregulated (P < 0.05). There were binding sites between LncRNA SNHG20 and miR-520c-3p, RAB22A and miR-520c-3p, which had targeted regulation relationship. Compared with the sh-NC group, the sh-SNHG20 group had fewer stromal like cells, more epithelial like cells, incomplete microtubule structure, and fewer nodules. LncRNA SNHG20, RAB22A, N-Cadherin, and vimentin were downregulated, while miR-520c-3p and E-cadherin were upregulated (P < 0.05). Compared with the sh-SNHG20+anti-NC group, the sh-SNHG20+anti-miR-520c-3p group had a higher number of stromal like cells, a lower number of epithelioid cells, tighter microtubule arrangement, and more microtubule nodules. miR-520c-3p and E-cadherin were downregulated, while RAB22A, N-cadherin, and vimentin were upregulated (P < 0.05). The transplanted tumor of OSCC in sh-SNHG20 group was smaller and lower than that in sh-NC group. The expression levels of LncRNA SNHG20 and RAB22A in the transplanted tumor tissues were lower than those in sh-NC group, and the expression level of miR-520c-3p was higher than that in sh-NC group (P < 0.05). Conclusion: LncRNA SNHG20 promotes epithelial-mesenchymal transition and microtubule formation in human oral squamous cell carcinoma cells by targeting the miR-520c-3p/RAB22A pathway. Inhibiting the expression of LncRNA SNHG20 can target and regulate the miR-520c-3p/RAB22A pathway to inhibit EMT and microtubule formation in OSCC cells.

Key words: Oral squamous cell carcinoma, Small nucleolar RNA host gene 20, Micro RNA-520c-3p, Rab protein 22a, Epithelial mesenchymal transition, Microtubule formation

中图分类号: 

  • R739.8

表1

LncRNA SNHG20、miR-520c-3p、RAB22A mRNA在OSCC组织中的表达"

GroupLncRNA SNHG20/GAPDHmiR-520c-3p/U6RAB22A mRNA/GAPDH
TAC0.57±0.051.13±0.110.52±0.05
OSCC1.20±0.120.64±0.061.08±0.10
t39.36635.16643.536
P< 0.001< 0.001< 0.001

表2

LncRNA SNHG20、miR-520c-3p、RAB22A mRNA在OSCC细胞中表达"

GroupLncRNA SNHG20/GAPDHmiR-520c-3p/U6RAB22A mRNA/GAPDH
HIOEC0.62±0.061.02±0.110.46±0.05
HSC-31.18±0.110.51±0.051.07±0.10
t10.94710.33913.364
P< 0.001< 0.001< 0.001

图1

在线预测LncRNA SNHG20、RAB22A与miR-520c-3p结合位点"

图2

RAB22A蛋白表达检测"

表3

比较LncRNA SNHG20、miR-520c-3p、RAB22A表达水平"

GroupLncRNA SNHG20/GAPDHmiR-520c-3p/U6RAB22A protein/β-actin
Control1.02±0.100.84±0.081.27±0.12
sh-NC1.00±0.090.82±0.081.25±0.11
sh-SNHG200.52±0.05a1.29±0.12a0.58±0.05a
sh-SNHG20+anti-NC0.54±0.051.30±0.130.57±0.05
sh-SNHG20+anti-miR-520c-3p0.53±0.050.95±0.09b0.80±0.08b
F81.11732.55795.090
P< 0.001< 0.001< 0.001

图3

各组细胞形态(×100)"

图4

EMT蛋白表达检测"

表4

分析E-cadherin、N-cadherin、vimentin表达水平"

GroupE-cadherin/β-actinN-cadherin/β-actinVimentin/β-actin
Control0.43±0.041.03±0.101.19±0.11
sh-NC0.41±0.041.04±0.111.16±0.12
sh-SNHG200.93±0.09a0.65±0.06a0.70±0.07a
sh-SNHG20+anti-NC0.90±0.090.63±0.060.72±0.07
sh-SNHG20+anti-miR-520c-3p0.58±0.05b0.87±0.08b0.95±0.09b
F86.23333.00836.642
P< 0.001< 0.001< 0.001

图5

各组细胞微管结节情况"

图6

移植瘤生长情况"

图7

移植瘤中RAB22A蛋白表达检测"

表5

LncRNA SNHG20对移植瘤生长的影响"

GroupTumor mass/gTumor volume/mm3LncRNA SNHG20/GAPDHmiR-520c-3p/U6RAB22A positive rate/%
sh-NC1.35±0.131 476.98±156.391.17±0.111.00±0.1147.45±5.08
sh-SNHG200.46±0.04583.41±60.270.52±0.051.41±0.1518.69±1.97
t16.02813.05913.1775.39912.929
P< 0.001< 0.001< 0.001< 0.001< 0.001
1 Fan T , Wang X , Zhang S , et al. NUPR1 promotes the proliferation and metastasis of oral squamous cell carcinoma cells by activating TFE3-dependent autophagy[J]. Signal Transduct Target Ther, 2022, 7 (1): 130- 141.
doi: 10.1038/s41392-022-00939-7
2 Singh S , Singh AK . Porphyromonas gingivalis in oral squamous cell carcinoma: A review[J]. Microbes Infect, 2022, 24 (3): 104925.
doi: 10.1016/j.micinf.2021.104925
3 Xie J , Lan T , Zheng DL , et al. CDH4 inhibits ferroptosis in oral squamous cell carcinoma cells[J]. BMC Oral Health, 2023, 23 (1): 329- 345.
doi: 10.1186/s12903-023-03046-3
4 Zang W , Liu J , Geng F , et al. Butyrate promotes oral squamous cell carcinoma cells migration, invasion and epithelial-mesenchymal transition[J]. Peer J, 2022, 10 (1): e12991- e13009.
5 Zhang N , Zeng L , Wang S , et al. LncRNA FER1L4 promotes oral squamous cell carcinoma progression via targeting miR-133a-5p/Prx1 axis[J]. Onco Targets Ther, 2021, 14 (1): 795- 806.
6 Wu J , Zhao W , Wang Z , et al. Long non-coding RNA SNHG20 promotes the tumorigenesis of oral squamous cell carcinoma via targeting miR-197/LIN28 axis[J]. J Cell Mol Med, 2019, 23 (1): 680- 688.
doi: 10.1111/jcmm.13987
7 Liu Y , Li G , Zhang Y , et al. Nectin-4 promotes osteosarcoma progression and metastasis through activating PI3K/AKT/NF-κB signaling by down-regulation of miR-520c-3p[J]. Cancer Cell Int, 2022, 22 (1): 252- 270.
doi: 10.1186/s12935-022-02669-w
8 Luo X , Wang J , Lu J , et al. RAB22A promotes epithelial-mesenchymal transition in papillary thyroid carcinoma by activating PI3K/AKT/mTOR signaling pathway[J]. Biomed Res Int, 2022, 2022, 1874550.
doi: 10.1155/2022/1874550
9 He M , Shen L , Jiang C , et al. RAB22A is a novel prognostic marker for cell progression in breast cancer[J]. Int J Mol Med, 2020, 45 (4): 1037- 1046.
10 Zhang Y , Wang A , Zhang X , et al. lncRNA LINC01296 promotes oral squamous cell carcinoma development by binding with SRSF1[J]. Biomed Res Int, 2021, 2021, 6661520.
doi: 10.1155/2021/6661520
11 Feller G , Khammissa RAG , Ballyram R , et al. Tumour genetic heterogeneity in relation to oral squamous cell carcinoma and anti-cancer treatment[J]. Int J Environ Res Public Health, 2023, 20 (3): 392- 402.
12 Yang Z , Yan G , Zheng L , et al. YKT6, as a potential predictor of prognosis and immunotherapy response for oral squamous cell carcinoma, is related to cell invasion, metastasis, and CD8+ T cell infiltration[J]. Oncoimmunology, 2021, 10 (1): 1938890.
doi: 10.1080/2162402X.2021.1938890
13 Ali AN , Ghoneim SM , Ahmed ER , et al. Cadherin switching in oral squamous cell carcinoma: A clinicopathological study[J]. J Oral Biol Craniofac Res, 2023, 13 (4): 486- 494.
doi: 10.1016/j.jobcr.2023.05.001
14 Tang J , Fang X , Chen J , et al. Long non-coding RNA (lncRNA) in oral squamous cell carcinoma: Biological function and clinical application[J]. Cancers (Basel), 2021, 13 (23): 5944.
doi: 10.3390/cancers13235944
15 Chen ZF , Wang Y , Sun LL , et al. LncRNA SNHG20 enhances the progression of oral squamous cell carcinoma by regulating the miR-29a/DIXDC1/Wnt regulatory axis[J]. Eur Rev Med Pharmacol Sci, 2020, 24 (10): 5436- 5445.
16 Zhu X , Zhang H , Xu J . Long noncoding RNA SNHG20 regulates cell migration, invasion, and proliferation via the microRNA-19b-3p/RAB14 axis in oral squamous cell carcinoma[J]. Bioengineered, 2021, 12 (1): 3993- 4003.
doi: 10.1080/21655979.2021.1950278
17 Li J , Jiang X , Li Z , et al. SP1-induced HOXD-AS1 promotes malignant progression of cholangiocarcinoma by regulating miR-520c-3p/MYCN[J]. Aging (Albany NY), 2020, 12 (16): 16304- 16325.
18 Li Z . Overexpression of lncRNA HOXA-AS2 promotes the progression of oral squamous cell carcinoma by mediating SNX5 expression[J]. BMC Mol Cell Biol, 2022, 23 (1): 59.
doi: 10.1186/s12860-022-00457-y
19 Liu D , Liu W , Chen X , et al. circKCNN2 suppresses the recurrence of hepatocellular carcinoma at least partially via regulating miR-520c-3p/methyl-DNA-binding domain protein 2 axis[J]. Clin Transl Med, 2022, 12 (1): e662.
doi: 10.1002/ctm2.662
20 Wen F , Meng F , Li X , et al. Characterization of prognostic value and immunological roles of RAB22A in hepatocellular carcinoma[J]. Front Immunol, 2023, 14, 1086342.
doi: 10.3389/fimmu.2023.1086342
21 Kang Z , Zhang C , Huangfu H . Exosomal lncRNA LINC02191 promotes laryngeal squamous cell carcinoma progression by targeting miR-204-5p/RAB22A axis and regulating PI3K/Akt/mTOR pathway[J]. Biochem Genet, 2023, 62 (3): 2117- 2133.
22 Hu Q , Xu L , Yi Q , et al. miR-204 suppresses uveal melanoma cell migration and invasion through negative regulation of RAB22A[J]. Funct Integr Genomics, 2023, 23 (1): 49.
doi: 10.1007/s10142-022-00953-6
[1] 徐励, 史闻, 李月华, 沈亚俊, 谢尚, 单小峰, 蔡志刚. 含LIM调宁蛋白同源域蛋白1可能作为辅助口腔鳞状细胞癌预后判断的生物学标志物[J]. 北京大学学报(医学版), 2025, 57(1): 19-25.
[2] 毛雅晴, 陈震, 于尧, 章文博, 刘洋, 彭歆. 2型糖尿病对口腔鳞状细胞癌患者预后的影响[J]. 北京大学学报(医学版), 2024, 56(6): 1089-1096.
[3] 苏雷震,陈洁,李显,季平. 沙利霉素对口腔鳞癌细胞增殖和凋亡的影响[J]. 北京大学学报(医学版), 2020, 52(5): 902-906.
[4] 陶船思博,董凡,王佃灿,郭传瑸. 红外热成像技术诊断口腔鳞状细胞癌颈淋巴结转移[J]. 北京大学学报(医学版), 2019, 51(5): 959-963.
[5] 刘洋,高岩,陈学杰,华红. 脱落细胞DNA 定量分析在口腔潜在恶性疾病诊断中的准确性[J]. 北京大学学报(医学版), 2019, 51(1): 16-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!