北京大学学报(医学版) ›› 2024, Vol. 56 ›› Issue (1): 4-8. doi: 10.19723/j.issn.1671-167X.2024.01.002
赵菡1,卫彦2,张学慧3,杨小平4,蔡晴4,宁成云5,徐明明2,刘雯雯2,黄颖2,何颖2,郭亚茹2,江圣杰2,白云洋2,吴宇佳2,郭雨思2,郑晓娜2,李文静2,邓旭亮2,*()
Han ZHAO1,Yan WEI2,Xuehui ZHANG3,Xiaoping YANG4,Qing CAI4,Chengyun NING5,Mingming XU2,Wenwen LIU2,Ying HUANG2,Ying HE2,Yaru GUO2,Shengjie JIANG2,Yunyang BAI2,Yujia WU2,Yusi GUO2,Xiaona ZHENG2,Wenjing LI2,Xuliang DENG2,*()
中图分类号:
1 | Addy M . Dentine hypersensitivity: New perspectives on an old problem[J]. Int Dent J, 2002, 52 (5 Suppl 2): 367- 375. |
2 | Gysi A . An attempt to explain the sensitiveness of dentine[J]. Br J Dent Sci, 1900, 43, 865- 868. |
3 | Brännström M , Aström A . The hydrodynamics of the dentine; its possible relationship to dentinal pain[J]. Int Dent J, 1972, 22 (2): 219- 227. |
4 |
Porto IC , Andrade AK , Montes MA . Diagnosis and treatment of dentinal hypersensitivity[J]. J Oral Sci, 2009, 51 (3): 323- 332.
doi: 10.2334/josnusd.51.323 |
5 | Chen N , Deng J , Jiang S , et al. The mechanism of dentine hypersensitivity: Stimuli-induced directional cation transport through dentinal tubules[J]. Nano Research, 2022, 16 (1): 991- 998. |
6 |
Gordon LM , Cohen MJ , MacRenaris KW , et al. Dental materials. Amorphous intergranular phases control the properties of rodent tooth enamel[J]. Science, 2015, 347 (6223): 746- 750.
doi: 10.1126/science.1258950 |
7 |
DeRocher KA , Smeets PJM , Goodge BH , et al. Chemical gra-dients in human enamel crystallites[J]. Nature, 2020, 583 (7814): 66- 71.
doi: 10.1038/s41586-020-2433-3 |
8 |
Wei Y , Liu S , Xiao Z , et al. Enamel repair with amorphous ceramics[J]. Adv Mater, 2020, 32 (7): e1907067.
doi: 10.1002/adma.201907067 |
9 |
Hou J , Xiao Z , Liu Z , et al. An amorphous peri-implant ligament with combined osteointegration and energy-dissipation[J]. Adv Mater, 2021, 33 (45): e2103727.
doi: 10.1002/adma.202103727 |
10 |
Vermeulen S , Tahmasebi Birgani Z , Habibovic P . Biomaterial-induced pathway modulation for bone regeneration[J]. Biomate-rials, 2022, 283, 121431.
doi: 10.1016/j.biomaterials.2022.121431 |
11 | Guo Y , Mei F , Huang Y , et al. Matrix stiffness modulates tip cell formation through the p-PXN-Rac1-YAP signaling axis[J]. Bioact Mater, 2021, 7, 364- 376. |
12 |
Liu WT , Wei Y , Zhang XH , et al. Lower extent but similar rhythm of osteogenic behavior in hBMSCs cultured on nanofibrous scaffolds versus induced with osteogenic supplement[J]. ACS Nano, 2013, 7 (8): 6928- 6938.
doi: 10.1021/nn402118s |
13 |
Lv Y , Huang Y , Xu M , et al. The miR-193a-3p-MAP3k3 signaling axis regulates substrate topography-induced osteogenesis of bone marrow stem cells[J]. Adv Sci (Weinh), 2020, 7 (1): 1901412.
doi: 10.1002/advs.201901412 |
14 |
Jiang S , Li H , Zeng Q , et al. The dynamic counterbalance of RAC1-YAP/OB-cadherin coordinates tissue spreading with stem cell fate patterning[J]. Adv Sci (Weinh), 2021, 8 (10): 2004000.
doi: 10.1002/advs.202004000 |
15 |
Wei Y , Jiang S , Si M , et al. Chirality controls mesenchymal stem cell lineage diversification through mechanoresponses[J]. Adv Mater, 2019, 31 (16): e1900582.
doi: 10.1002/adma.201900582 |
16 | Jiang S , Zeng Q , Zhao K , et al. Chirality bias tissue homeostasis by manipulating immunological response[J]. Adv Mater, 2021, 34 (2): e2105136. |
17 |
Liu Y , Zhang X , Cao C , et al. Built-in electric fields dramatically induce enhancement of osseointegration[J]. Adv Funct Mater, 2017, 27 (47): 1703771.
doi: 10.1002/adfm.201703771 |
18 |
Zhang X , Zhang C , Lin Y , et al. Nanocomposite membranes enhance bone regeneration through restoring physiological electric microenvironment[J]. ACS Nano, 2016, 10 (8): 7279- 7286.
doi: 10.1021/acsnano.6b02247 |
19 | Wei Y , Zhang X , Song Y , et al. Magnetic biodegradable Fe3O4/CS/PVA nanofibrous membranes for bone regeneration[J]. Biomed Mater, 2021, 6 (5): 055008. |
20 | Liu W , Zhang F , Yan Y , et al. Remote tuning of built-in magnetoelectric microenvironment to promote bone regeneration by modulating cellular exposure to arginylglycylaspartic acid peptide[J]. Adv Funct Mater, 2020, 31 (6): 2006226. |
21 |
Liu W , Zhao H , Zhang C , et al. In situ activation of flexible magnetoelectric membrane enhances bone defect repair[J]. Nat Commun, 2023, 14 (1): 4091.
doi: 10.1038/s41467-023-39744-3 |
22 |
Dai X , Heng BC , Bai Y , et al. Restoration of electrical micro-environment enhances bone regeneration under diabetic conditions by modulating macrophage polarization[J]. Bioactive materials, 2021, 6 (7): 2029- 2038.
doi: 10.1016/j.bioactmat.2020.12.020 |
23 |
Zhao H , Liu S , Wei Y , et al. Multiscale engineered artificial tooth enamel[J]. Science, 2022, 375 (6580): 551- 556.
doi: 10.1126/science.abj3343 |
24 |
Zhou Y , Deng J , Zhang Y , et al. Engineering DNA-guided hydroxyapatite bulk materials with high stiffness and outstanding antimicrobial ability for dental inlay applications[J]. Adv Mater, 2022, 34 (27): e2202180.
doi: 10.1002/adma.202202180 |
25 |
Chen K , Tang X , Jia B , et al. Graphene oxide bulk material reinforced by heterophase platelets with multiscale interface crosslinking[J]. Nat Mater, 2022, 21 (10): 1121- 1129.
doi: 10.1038/s41563-022-01292-4 |
26 | Lin S , Cai Q , Ji J , et al. Electrospun nanofiber reinforced and toughened composites through in situ nano-interface formation[J]. Compos Sci Technol, 2008, 68 (15): 3322- 3329. |
27 | Zhang S , Huang Y , Yang X , et al. Gelatin nanofibrous membrane fabricated by electrospinning of aqueous gelatin solution for guided tissue regeneration[J]. J Biomed Mater Res A, 2009, 90 (3): 671- 679. |
28 |
Zhang X , Cai Q , Liu H , et al. Calcium ion release and osteoblastic behavior of gelatin/beta-tricalcium phosphate composite nanofibers fabricated by electrospinning[J]. Mater Letters, 2012, 73, 172- 175.
doi: 10.1016/j.matlet.2012.01.049 |
29 |
Zhang C , Liu W , Cao C , et al. Modulating surface potential by controlling the β phase content in poly(vinylidene fluoridetrifluoroethylene) membranes enhances bone regeneration[J]. Adv Healthc Mater, 2018, 7 (11): e1701466.
doi: 10.1002/adhm.201701466 |
30 |
Bai Y , Zheng X , Zhong X , et al. Manipulation of heterogeneous surface electric potential promotes osteogenesis by strengthening RGD peptide binding and cellular mechanosensing[J]. Advanced Materials, 2023, 35 (24): e2209769.
doi: 10.1002/adma.202209769 |
31 |
Wei Y , Mo X , Zhang P , et al. Directing stem cell differentiation via electrochemical reversible switching between nanotubes and nanotips of polypyrrole array[J]. ACS Nano, 2017, 11 (6): 5915- 5924.
doi: 10.1021/acsnano.7b01661 |
[1] | 任爽, 时会娟, 梁子轩, 张思, 胡晓青, 黄红拾, 敖英芳. 前交叉韧带重建术后侧切动作的生物力学特征[J]. 北京大学学报(医学版), 2024, 56(5): 868-873. |
[2] | 吴元,李晓丽,杨松霖,晏晓明,李海丽. 应用CorVis ST对圆锥角膜及亚临床期圆锥角膜生物力学特性的研究及判别标准分析[J]. 北京大学学报(医学版), 2019, 51(5): 881-886. |
[3] | 吴超,王振宇,林国中,于涛,刘彬,司雨,张一博,李元超. 单侧半椎板及不同程度小关节切除术对羊颈椎生物力学的影响[J]. 北京大学学报(医学版), 2019, 51(4): 728-732. |
[4] | 张家豪,任爽,邵嘉艺,牛星跃,胡晓青,敖英芳. 前交叉韧带生物力学止点重建的解剖学与有限元分析[J]. 北京大学学报(医学版), 2019, 51(3): 586-590. |
[5] | 荣艳波,田光磊,陈山林. 深层桡尺远侧韧带对桡尺远侧关节稳定作用的生物力学研究[J]. 北京大学学报(医学版), 2017, 49(3): 518-521. |
[6] | 刘海鹰,王捷夫,朱震奇. 融合与Topping-off术对腰椎影响的有限元分析[J]. 北京大学学报(医学版), 2013, 45(5): 723-727. |
[7] | 郭阳,田光磊,姜保国,陈山林,韩娜. 舟骨骨折的螺钉居中固定:生物力学试验[J]. 北京大学学报(医学版), 2013, 45(5): 684-687. |
[8] | 李智, 王新知, 高承志, IVO Krejci. 计算机辅助设计与制作一体化玻璃纤维桩核修复漏斗状根管的抗疲劳和抗折性能[J]. 北京大学学报(医学版), 2013, 45(1): 59-63. |
[9] | 彭长亮*, 杨毅*, 孙馨, 郭卫. 高渗盐水灭活自体骨再植的动物实验[J]. 北京大学学报(医学版), 2012, 44(6): 950-953. |
[10] | 张红芳 , 赵超勇, 范红松, 张晖 , 裴福兴, 王光林. 多孔钛修复兔桡骨骨缺损的组织学和力学研究[J]. 北京大学学报(医学版), 2011, 43(5): 724-729. |
[11] | 李永舵, 刘书茂, 贾金生, 周君琳 . 后踝骨折内固定方法的选择:生物力学及临床应用研究[J]. 北京大学学报(医学版), 2011, 43(5): 718-723. |
[12] | 李淳德, 孙浩林, 于峥嵘. 腰椎棘突间固定对邻近节段刚度影响的生物力学研究[J]. 北京大学学报(医学版), 2011, 43(5): 657-660. |
[13] | 刘亦洪, 冯海兰, 包亦望, 邱岩. 基底瓷与饰瓷的厚度比对IPS Empress Ⅱ热压铸陶瓷抗弯强度的影响[J]. 北京大学学报(医学版), 2007, 39(1): 64-66. |
|