北京大学学报(医学版) ›› 2025, Vol. 57 ›› Issue (1): 7-12. doi: 10.19723/j.issn.1671-167X.2025.01.002

• 论著 • 上一篇    下一篇

敲减NPTX1促进人骨髓间充质干细胞成骨分化

帅婷1, 郭艳艳1, 林春平2, 侯晓玫1,*(), 金婵媛1,*()   

  1. 1. 北京大学口腔医学院·口腔医院第二门诊部,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,北京 100081
    2. 福建医科大学省立临床医学院,福建省立医院,福州大学附属省立医院口腔科,福州 350001
  • 收稿日期:2024-09-12 出版日期:2025-02-18 发布日期:2025-01-25
  • 通讯作者: 侯晓玫,金婵媛 E-mail:houxiaomei1108@163.com;jinchanyuanjcy@bjmu.edu.cn
  • 基金资助:
    中国科协青年人才托举项目(YESS20220554);北京科协青年人才托举项目(BYESS2024297)

Knockdown of NPTX1 promotes osteogenic differentiation of human bone marrow mesenchymal stem cells

Ting SHUAI1, Yanyan GUO1, Chunping LIN2, Xiaomei HOU1,*(), Chanyuan JIN1,*()   

  1. 1. Second Clinical Division, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digi-tal Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
    2. Department of Stomatology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, China
  • Received:2024-09-12 Online:2025-02-18 Published:2025-01-25
  • Contact: Xiaomei HOU, Chanyuan JIN E-mail:houxiaomei1108@163.com;jinchanyuanjcy@bjmu.edu.cn
  • Supported by:
    the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(YESS20220554);Beijing Young Elite Scientists Sponsorship Program by Beijing Association for Science and Technology(BYESS2024297)

RICH HTML

8   

摘要:

目的: 初步探究神经元正五聚体1(neuronal pentraxin 1,NPTX1)基因对人骨髓间充质干细胞(human bone marrow mesenchymal stem cells,hBMSCs)成骨分化调控的作用机制。方法: 将hBMSCs进行成骨诱导培养,在不同的时间点(0、3、7、10、14 d)收集RNA,通过实时荧光定量聚合酶链式反应(quantitative real-time polymerase chain reaction,qPCR)技术检测成骨分化调控相关的Runt相关转录因子2(runt-related transcription factor 2,RUNX2)、碱性磷酸酶(alkaline phosphatase,ALP)、骨钙素(osteocalcin,OCN)以及NPTX1的mRNA表达水平。通过构建NPTX1 shRNA慢病毒并感染hBMSCs,建立NPTX1稳定敲减的hBMSCs细胞系;采用ALP染色、茜素红(alizarin red,AR)染色和qPCR等方法检测敲减NPTX1对hBMSCs成骨分化能力的影响。结果: 体外诱导hBMSCs成骨分化时,随着成骨诱导时间的延长,与第0天相比,成骨基因RUNX2ALPOCN表达量均显著升高,而NPTX1表达量明显降低(P < 0.01)。慢病毒感染hBMSCs 72 h后,qPCR结果显示NPTX1敲减效率高于60%。hBMSCs敲减NPTX1后,将敲减NPTX1组(sh NPTX1组)及其对照组(shNC组)在普通增殖培养基下进行培养后提取RNA,qPCR结果显示和shNC组相比,sh NPTX1组的成骨相关基因RUNX2和成骨细胞特异性转录因子(osterix,OSX)表达量显著增高(P < 0.01)。ALP染色试验显示成骨诱导7 d时,sh NPTX1组较shNC组显色明显加深;AR染色试验显示成骨诱导14 d时,sh NPTX1组较shNC组矿化结节明显增多。结论: NPTX1对hBMSCs成骨分化具有调控作用,且其敲减可促进hBMSCs的成骨分化,该结果提示NPTX1可能成为治疗骨质疏松症等成骨异常疾病的潜在靶点。

关键词: 骨髓间充质干细胞, NPTX1基因, 成骨分化

Abstract:

Objective: To initially investigate the function of neuronal pentraxin 1 (NPTX1) gene on osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). Methods: hBMSCs were induced to undergo osteogenic differentiation, and then RNA was collected at different time points, namely 0, 3, 7, 10 and 14 d. The mRNA expression levels of key genes related with osteogenic differentiation, including runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), osteocalcin (OCN), and NPTX1, were detected on the basis of quantitative real-time polymerase chain reaction (qPCR) technology. In order to establish a stable NPTX1-knockdown hBMSCs cell line, NPTX1 shRNA lentivirus was constructed and used to infect hBMSCs. ALP staining, alizarin red (AR) staining, and qPCR were employed to assess the impact of NPTX1-knockdown on the osteogenic differentiation ability of hBMSCs. Results: The results showed that during the osteogenic differentiation of hBMSCs in vitro, the mRNA expression levels of osteogenic genes RUNX2, ALP and OCN significantly increased compared with 0 d, while NPTX1 expression decreased markedly (P < 0.01) as the osteogenic induction period exten-ded. At 72 h post-infection with lentivirus, the result of qPCR indicated that the knockdown efficiency of NPTX1 was over 60%. After knocking down NPTX1 in hBMSCs, RNA was extracted from both the NPTX1-knockdown group (sh NPTX1 group) and the control group (shNC group) cultured in regular proliferation medium. The results of qPCR showed that the expression levels of osteogenic-related genes RUNX2 and osterix (OSX) were significantly higher in the sh NPTX1 group compared with the shNC group (P < 0.01). ALP staining revealed a significantly deeper coloration in the sh NPTX1 group than in the shNC group at the end of 7 d of osteogenic induction. AR staining demonstrated a marked increase in mineralized nodules in the sh NPTX1 group compared with the shNC group at the end of 14 d of osteogenic induction. Conclusion: NPTX1 exerts a modulatory role in the osteogenic differentiation of hBMSCs, and its knockdown has been found to enhance the osteogenic differentiation of hBMSCs. This finding implies that NPTX1 could potentially serve as a therapeutic target for the treatment of osteogenic abnormalities, including osteoporosis.

Key words: Bone marrow mesenchymal stem cells, NPTX1 gene, Osteogenic differentiation

中图分类号: 

  • R34

表1

qPCR引物"

Gene nameForward primer sequences (5' to 3')Reverse primer sequences (5' to 3')
NPTX1CAGCGAGCTCGAGAAAGGTCATCCGCAGTGGGAATGTGAGC
GAPDHCGGACCAATACGACCAAATCCGAGCCACATCGCTCAGACACC
RUNX2TCTTAGAACAAATTCTGCCCTTTTGCTTTGGTCTTGAAATCACA
ALPGACCTCCTCGGAAGACACTCTGAAGGGCTTCTTGTCTGTG
OCNAGCAAAGGTGCAGCCTTTGTGCGCCTGGGTCTCTTCACT
OSXCCTCCTCAGCTCACCTTCTCGTTGGGAGCCCAAATAGAAA

表2

shRNA靶序列"

shRNA nameshRNA sequences (5' to 3')
shNCTTCTCCGAACGTGTCACGT
shNPTX1GGATCTGCTGCAGAGCAAGAT

图1

hBMSCs成骨诱导后NPTX1和成骨相关基因的mRNA表达水平"

图2

NPTX1的敲减效率qPCR检测"

图3

敲减NPTX1促进hBMSCs成骨分化的检测结果"

图4

敲减NPTX1促进hBMSCs成骨分化的AR染色结果"

1 Chu DT , Phuong TNT , Tien NLB , et al. An update on the progress of isolation, culture, storage, and clinical application of human bone marrow mesenchymal stem/stromal cells[J]. Int J Mol Sci, 2020, 21 (3): 708.
doi: 10.3390/ijms21030708
2 Pharoun J , Berro J , Sobh J , et al. Mesenchymal stem cells biolo-gical and biotechnological advances: Implications for clinical applications[J]. Eur J Pharmacol, 2024, 977, 176719.
doi: 10.1016/j.ejphar.2024.176719
3 Chen Y , Huang Y , Li J , et al. Enhancing osteoporosis treatment with engineered mesenchymal stem cell-derived extracellular vesicles: Mechanisms and advances[J]. Cell Death Dis, 2024, 15 (2): 119.
doi: 10.1038/s41419-024-06508-w
4 Zhang J , Hu W , Zou Z , et al. The role of lipid metabolism in osteoporosis: Clinical implication and cellular mechanism[J]. Genes Dis, 2023, 11 (4): 101122.
5 Zhang JY , Li LC . Genetic expression and functional characterization of the RUNX2 gene in human adult bone marrow mesenchymal stem cells[J]. Genet Mol Res, 2015, 14 (4): 18210- 18217.
doi: 10.4238/2015.December.23.8
6 Li Y , Zhang S , Liu J , et al. The pentraxin family in autoimmune disease[J]. Clin Chim Acta, 2023, 551, 117592.
doi: 10.1016/j.cca.2023.117592
7 Coutelier M , Jacoupy M , Janer A , et al. NPTX1 mutations trigger endoplasmic reticulum stress and cause autosomal dominant cerebellar ataxia[J]. Brain, 2022, 145 (4): 1519- 1534.
doi: 10.1093/brain/awab407
8 Zhou C , Qin Y , Xie Z , et al. NPTX1 is a novel epigenetic regulation gene and associated with prognosis in lung cancer[J]. Biochem Biophys Res Commun, 2015, 458 (2): 381- 386.
doi: 10.1016/j.bbrc.2015.01.124
9 Yan H , Zheng C , Li Z , et al. NPTX1 promotes metastasis via integrin/FAK signaling in gastric cancer[J]. Cancer Manag Res, 2019, 11, 3237- 3251.
doi: 10.2147/CMAR.S196509
10 Peng X , Pan K , Zhao W , et al. NPTX1 inhibits colon cancer cell proliferation through down-regulating cyclin A2 and CDK2 expression[J]. Cell Biol Int, 2018, 42 (5): 589- 597.
doi: 10.1002/cbin.10935
11 Adejuyigbe B , Kallini J , Chiou D , et al. Osteoporosis: Molecular pathology, diagnostics, and therapeutics[J]. Int J Mol Sci, 2023, 24 (19): 14583.
doi: 10.3390/ijms241914583
12 Qaseem A , Hicks LA , Etxeandia-Ikobaltzeta I , et al. Pharmacologic treatment of primary osteoporosis or low bone mass to prevent fractures in adults: A living clinical guideline from the american college of physicians[J]. Ann Intern Med, 2023, 176 (2): 224- 238.
doi: 10.7326/M22-1034
13 Wang C , Liu Y , Hu X , et al. Titanium dioxide nanotubes increase purinergic receptor P2Y6 expression and activate its downstream PKCα-ERK1/2 pathway in bone marrow mesenchymal stem cells under osteogenic induction[J]. Acta Biomater, 2023, 157, 670- 682.
doi: 10.1016/j.actbio.2022.11.045
14 Meng M , Xia Q , Li Y , et al. Enamel matrix derivative expedites osteogenic differentiation of BMSCs via Wnt/β-catenin pathway in high glucose microenvironment[J]. J Bone Miner Metab, 2022, 40 (3): 448- 459.
doi: 10.1007/s00774-022-01318-6
15 Chen SC , Jiang T , Liu QY , et al. Hsa_circ_0001485 promoted osteogenic differentiation by targeting BMPR2 to activate the TGFβ-BMP pathway[J]. Stem Cell Res Ther, 2022, 13 (1): 453.
doi: 10.1186/s13287-022-03150-1
16 Wang YJ , Zhang HQ , Han HL , et al. Taxifolin enhances osteogenic differentiation of human bone marrow mesenchymal stem cells partially via NF-κB pathway[J]. Biochem Biophys Res Commun, 2017, 490 (1): 36- 43.
doi: 10.1016/j.bbrc.2017.06.002
17 Zhang J , Zhu L , Zhou J , et al. Ubiquitination of ASCL1 mediates CD47 transcriptional activation of the AKT signaling pathway, and glycolysis promotes osteogenic differentiation of hBMSCs[J]. In Vitro Cell Dev Biol Anim, 2023, 59 (8): 636- 648.
doi: 10.1007/s11626-023-00811-0
18 Wu J , Cai P , Lu Z , et al. Identification of potential specific biomarkers and key signaling pathways between osteogenic and adipogenic differentiation of hBMSCs for osteoporosis therapy[J]. J Orthop Surg Res, 2020, 15 (1): 437.
doi: 10.1186/s13018-020-01965-3
19 Greggi C , Cariati I , Onorato F , et al. PTX3 Effects on osteogenic differentiation in osteoporosis: An in vitro study[J]. Int J Mol Sci, 2021, 22 (11): 5944.
doi: 10.3390/ijms22115944
20 Tarantino U , Greggi C , Cariati I , et al. The role of PTX3 in mineralization processes and aging-related bone diseases[J]. Front Immunol, 2021, 11, 622772.
doi: 10.3389/fimmu.2020.622772
21 鲁佳君, 孙岩, 张煊, 等. 正五聚蛋白3在骨质疏松和骨折愈合中的研究进展[J]. 中国骨伤, 2023, 36 (4): 393- 398.
[1] 胡轶博, 吕伟佳, 夏炜, 刘亦洪. 基于细胞生长与成骨分化的不同孔径生物支架流体力学有限元分析[J]. 北京大学学报(医学版), 2025, 57(1): 97-105.
[2] 帅婷,刘娟,郭艳艳,金婵媛. 敲减长链非编码RNA MIR4697HG抑制骨髓间充质干细胞成脂向分化[J]. 北京大学学报(医学版), 2022, 54(2): 320-326.
[3] 尤鹏越,刘玉华,王新知,王思雯,唐琳. 脱细胞猪心包膜生物相容性及成骨性能的体内外评价[J]. 北京大学学报(医学版), 2021, 53(4): 776-784.
[4] 谢静,赵玉鸣,饶南荃,汪晓彤,方滕姣子,李晓霞,翟越,李静芝,葛立宏,王媛媛. 3种口腔颌面部来源的间充质干细胞成血管内皮分化潜能的比较研究[J]. 北京大学学报(医学版), 2019, 51(5): 900-906.
[5] 刘霞,李英妮,孙晓麟,彭清林,卢昕,王国春. 去整合素金属蛋白酶对成骨分化的影响[J]. 北京大学学报(医学版), 2018, 50(6): 962-967.
[6] 朱云艳,李倩,张怡美,周彦恒. MAPK和AKT磷酸化下调参与Toll样受体抑制的人牙周膜干细胞的成骨分化[J]. 北京大学学报(医学版), 2018, 50(1): 33-41.
Viewed
Full text
30
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 8 0 0 22

  From Others local
  Times 9 21
  Rate 30% 70%

Abstract
73
Just accepted Online first Issue
0 0 73
  From Others local
  Times 51 22
  Rate 70% 30%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!