北京大学学报(医学版) ›› 2025, Vol. 57 ›› Issue (1): 97-105. doi: 10.19723/j.issn.1671-167X.2025.01.015

• 论著 • 上一篇    下一篇

基于细胞生长与成骨分化的不同孔径生物支架流体力学有限元分析

胡轶博1, 吕伟佳2, 夏炜3, 刘亦洪1,*()   

  1. 1. 北京大学口腔医学院·口腔医院综合科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,北京 100081
    2. 中国中医科学院西苑医院口腔科,北京 100091
    3. Department of Materials Science and Engineering, Uppsala University, Uppsala 75121,Sweden
  • 收稿日期:2024-10-02 出版日期:2025-02-18 发布日期:2025-01-25
  • 通讯作者: 刘亦洪 E-mail:kqliuyh@163.com
  • 基金资助:
    国家自然科学基金(52111530189)

Hydrodynamic finite element analysis of biological scaffolds with different pore sizes for cell growth and osteogenic differentiation

Yibo HU1, Weijia LYU2, Wei XIA3, Yihong LIU1,*()   

  1. 1. Department of General Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomato-logy & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
    2. Department of Stomatology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing 100091, China
    3. Department of Materials Science and Engineering, Uppsala University, Uppsala 75121, Sweden
  • Received:2024-10-02 Online:2025-02-18 Published:2025-01-25
  • Contact: Yihong LIU E-mail:kqliuyh@163.com
  • Supported by:
    the National Natural Science Foundation of China(52111530189)

RICH HTML

  

摘要:

目的: 应用流体力学有限元分析方法,建立相同孔隙率、不同孔径的三周期极小曲面(triply periodic minimal surfaces,TPMS)螺旋形(Gyroid)多孔支架模型,模拟体内微环境,通过比较不同孔径支架的流体流速、壁面剪切应力、渗透率等相关参数变化,分析不同孔径的多孔支架对细胞黏附、增殖和成骨分化的可能影响。方法: 利用nTopology软件建立3组孔径的Gyroid多孔支架模型,支架尺寸为10 mm×10 mm×10 mm,孔径大小分别为400、600、800 μm,内部结构为各向同性。利用ANSYS 2022R1软件划分为非结构四面体网格,网格总数300+万。设定边界条件,流场域入口速度分别为0.01、0.1、1 mm/s,出口压力为0 Pa。根据Navier-Stokes方程计算流体流经支架时的压力、流速、壁面剪切应力,根据达西定律(Darcy’ s law)计算渗透率,使用ANSYS 2022R1软件中的Static structural模块对上述3种孔径支架的结构模型进行抗压强度分析。结果: 当入口流速分别为0.01、0.1、1 mm/s时,壁面剪切应力与流体流速呈线性关系,流速增加会导致壁面剪切应力增大。在0.1 mm/s流速下,当流体流经孔径为400、600、800 μm的3组支架时,压力呈梯度分布并逐渐减小,入口端压力依次为0.272、0.083、0.079 Pa;平均流速依次为0.093、0.078、0.070 mm/s;平均壁面剪切应力依次为2.955、1.343、1.706 mPa;渗透率依次为0.54×10-8、1.80×10-8、1.89×10-8 m2。计算3组支架内部最适合细胞黏附、增殖与成骨分化的壁面剪切应力范围所在区域占比,其中600 μm孔径支架该剪切应力范围内的内表面面积占比最大(27.65%),其次是800 μm孔径支架(17.30%),400 μm孔径支架占比最小(1.95%)。400、600和800 μm孔径支架的抗压强度依次为23、26、34 MPa。结论: 3组孔径的Gyroid支架在压应力作用下,应力分布均匀;600和800 μm孔径的Gyroid支架渗透率明显高于400 μm组,600 μm孔径的支架平均壁面剪切应力最小,且内部适合细胞生长与成骨分化的壁面区域占比最大,可能更适合于细胞黏附、增殖与成骨分化。

关键词: 生物支架, 孔径, 有限元分析, 流体力学, 成骨分化

Abstract:

Objective: The triply periodic minimal surface (TPMS) Gyroid porous scaffolds were built with identical porosity while varying pore sizes were used by fluid mechanics finite element analysis (FEA) to simulate the in vivo microenvironment. The effects of scaffolds with different pore sizes on cell adhesion, proliferation, and osteogenic differentiation were evaluated through calculating fluid velocity, wall shear stress, and permeability in the scaffolds. Methods: Three types of gyroid porous scaffolds, with pore sizes of 400, 600 and 800 μm, were established by nTopology software. Each scaffold had dimensions of 10 mm × 10 mm × 10 mm and isotropic internal structures. The models were imported to the ANSYS 2022R1 software, and meshed into over 3 million unstructured tetrahedral elements. Boun- dary conditions were set with inlet flow velocities of 0.01, 0.1, and 1 mm/s, and outlet pressure of 0 Pa. Pressure, velocity, and wall shear stress were calculated as fluid flowed through the scaffolds using the Navier-Stokes equations. At the same time, permeability was determined based on Darcy' s law. The compressive strength of scaffolds with different pore sizes was evaluated by ANSYS 2022R1 Static structural analysis. Results: A linear relationship was observed between the wall shear stress and fluid velocity at inlet flow rates of 0.01, 0.1 and 1 mm/s, with increasing velocity leading to higher wall shear stress. At the flow velocity of 0.1 mm/s, the initial pressures of scaffolds with pore sizes of 400, 600 and 800 μm were 0.272, 0.083 and 0.079 Pa, respectively. The fluid pressures were gradually decreased across the scaffolds. The average flow velocities were 0.093, 0.078 and 0.070 mm/s, the average wall shear stresses 2.955, 1.343 and 1.706 mPa, permeabilities values 0.54×10-8 1.80×10-8 and 1.89×10-8 m2 in the scaffolds with pore sizes of 400, 600 and 800 μm. The scaffold surface area proportions according with optimal wall shear stress range for cell growth and osteogenic differentiation were calcula-ted, which was highest in the 600 μm scaffold (27.65%), followed by the 800 μm scaffold (17.30%) and the 400 μm scaffold (1.95%). The compressive strengths of the scaffolds were 23, 26 and 34 MPa for the 400, 600 and 800 μm pore sizes. Conclusion: The uniform stress distributions appeared in all gyroid scaffold types under compressive stress. The permeabilities of scaffolds with pore sizes of 600 and 800 μm were significantly higher than the 400 μm. The average wall shear stress in the scaffold of 600 μm was the lowest, and the scaffold surface area proportion for cell growth and osteogenic differentiation the largest, indicating that it might be the most favorable design for supporting these cellular activities.

Key words: Biological scaffolds, Pore size, Finite element analysis, Fluid mechanics, Osteogenic differentiation

中图分类号: 

  • R782.4

表1

3组支架主要参数"

Scaffold Porosity/% Pore size/μm Strut size/μm Volume of porous scaffold/mm3 Surface area/mm2 Specific surface area/(mm2/mm3)
P400 68.98 400 260 310.2 3590.94 11.58
P600 70.76 600 390 292.4 2366.90 8.09
P800 71.53 800 510 284.7 1755.36 6.17

图1

3组支架结构示意图"

图2

流场域和网格示意图"

图3

抗压强度分析时边界条件设置示意图"

图4

入口速度0.1 mm/s时3组支架的压力分布云图"

表2

不同流速下流体流经3组支架时的平均流速和最大流速"

Inlet velocity/(mm/s) P400 P600 P800
Average velocity/(mm/s) Maximum velocity/(mm/s) Average velocity/(mm/s) Maximum velocity/(mm/s) Average velocity/(mm/s) Maximum velocity/(mm/s)
0.01 0.009 0.032 0.008 0.033 0.007 0.033
0.1 0.093 0.312 0.078 0.330 0.070 0.331
1 0.939 3.168 0.792 3.273 0.704 3.279

图5

入口速度0.1 mm/s时3组支架的流速分布云图"

表3

不同入口流速下3组支架的平均壁面剪切应力和最大壁面剪切应力"

Inlet velocity/(mm/s) P400 P600 P800
Average wall shear stress/mPa Maximum wall shear stress/mPa Average wall shear stress/mPa Maximum wall shear stress/mPa Average wall shear stress/mPa Maximum wall shear stress/mPa
0.01 0.295 1.499 0.134 0.508 0.170 0.616
0.1 2.955 13.885 1.343 5.097 1.706 6.123
1 29.935 138.447 13.715 51.738 17.326 63.048

图6

3组支架的壁面剪切应力云图"

图7

3组支架的应力分布云图"

1 Ray S , Nandi SK , Dasgupta S . Enhanced bone regeneration using Antheraea mylitta silk fibroin and chitosan based scaffold: In-vivo and in-vitro study[J]. Biomed Mater, 2023, 18 (5): 10.
2 Li Z , Tang S , Shi Z , et al. Multi-scale cellular PLA-based bionic scaffold to promote bone regrowth and repair[J]. Int J Biol Macromol, 2023, 245, 125511.
doi: 10.1016/j.ijbiomac.2023.125511
3 Zhang J , Tong D , Song H , et al. Osteoimmunity-regulating biomimetically hierarchical scaffold for augmented bone regeneration[J]. Adv Mater, 2022, 34 (36): e2202044.
doi: 10.1002/adma.202202044
4 邹运, 韩青, 徐晓麟, 等. 骨科和口腔颌面外科3D打印模型的精度验证和可靠性分析[J]. 吉林大学学报(医学版), 2017, 43 (5): 996- 1001.
5 吴其右, 崔博宇, 夏炜, 等. 基于细胞黏附的不同微结构3D打印多孔生物支架流体力学有限元分析[J]. 组织工程与重建外科杂志, 2024, 20 (3): 293- 299.
6 Luan HQ , Wang LT , Ren WY , et al. The effect of pore size and porosity of Ti6Al4V scaffolds on MC3T3-E1 cells and tissue in rabbits[J]. Sci China Technol Sci, 2019, 62 (7): 9.
7 Ma S , Tang Q , Han X , et al. Manufacturability, mechanical properties, mass-transport properties and biocompatibility of triply periodic minimal surface (TPMS) porous scaffolds fabricated by selective laser melting[J]. Mater Des, 2020, 195, 109034.
doi: 10.1016/j.matdes.2020.109034
8 Wu J , Zhang Y , Lyu Y , et al. On the various numerical techniques for the optimization of bone scaffold[J]. Materials (Basel), 2023, 16 (3): 974.
doi: 10.3390/ma16030974
9 Karageorgiou V , Kaplan D . Porosity of 3D biomaterial scaffolds and osteogenesis[J]. Biomaterials, 2005, 26 (27): 5474- 5491.
doi: 10.1016/j.biomaterials.2005.02.002
10 Ouyang P , Dong H , He X , et al. Hydromechanical mechanism behind the effect of pore size of porous titanium scaffolds on osteoblast response and bone ingrowth[J]. Mater Des, 2019, 183, 108151.
doi: 10.1016/j.matdes.2019.108151
11 Tsuruga E , Takita H , Itoh H , et al. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis[J]. J Biochem, 1997, 121 (2): 317- 324.
doi: 10.1093/oxfordjournals.jbchem.a021589
12 王林, 马真胜, 李涤尘, 等. 灌注培养促进人胚成骨细胞在大体积可控微结构支架内的均匀扩增[J]. 中华医学杂志, 2013, 93 (25): 1970- 1974.
13 崔越. 3D打印高强度三周期极小曲面羟基磷灰石支架用于骨修复的研究[D]. 广州: 华南理工大学, 2021.
14 Ali D , Ozalp M , Blanquer SBG , et al. Permeability and fluid flow-induced wall shear stress in bone scaffolds with TPMS and lattice architectures: A CFD analysis[J]. Euromech Fluids, 2020, 79, 376- 385.
15 Prakoso AT , Basri H , Adanta D , et al. The effect of tortuosity on permeability of porous scaffold[J]. Biomedicines, 2023, 11 (2): 427.
doi: 10.3390/biomedicines11020427
16 Porter B , Zauel R , Stockman H , et al. 3D computational mode-ling of media flow through scaffolds in a perfusion bioreactor[J]. J Biomech, 2005, 38 (3): 543- 549.
doi: 10.1016/j.jbiomech.2004.04.011
17 Pires T , Santos J , Ruben RB , et al. Numerical-experimental analysis of the permeability-porosity relationship in triply periodic minimal surfaces scaffolds[J]. J Biomech, 2021, 117, 110263.
doi: 10.1016/j.jbiomech.2021.110263
18 王真. 羟基磷灰石多孔骨支架的光固化制备工艺及力学与生物学性能研究[D]. 济南: 山东大学, 2020.
19 Zhu T , Cui Y , Zhang M , et al. Engineered three-dimensional scaffolds for enhanced bone regeneration in osteonecrosis[J]. Bioact Mater, 2020, 5 (3): 584- 601.
20 姜至秀, 季俣辰, 刘丹瑜, 等. Gyroid结构钛仿生骨支架修复下颌骨节段性缺损的生物力学性能[J]. 中国组织工程研究, 2025, 29 (22): 4621- 4628.
21 Chan SW, Jusoh N, Abdul SA. Effect of fluid properties on bone scaffold permeability[C/OL]// 4th International Conference for Innovation in Biomedical Engineering and Life Sciences, 2022. (2024-03-22)[2024-06-26]. https://doi.org/10.1007/978-3-031-56438-3_3.
22 Prakoso AT , Basri H , Adanta D , et al. The effect of tortuosity on permeability of porous scaffold[J]. Biomedicines, 2023, 11 (2): 427.
doi: 10.3390/biomedicines11020427
23 张传辉, 李建军, 杨军. 动态压力对负载胰岛素样生长因子1基因兔脂肪间充质干细胞增殖能力和机械性能的影响[J]. 中国组织工程研究, 2021, 25 (13): 6.
24 熊婉琦, 李振豪, 崔焱, 等. 生物力学作用对成骨细胞生物特性的影响[J]. 中国组织工程研究, 2024, 28 (21): 3407- 3412.
25 Chen X , Guo J , Yuan Y , et al. Cyclic compression stimulates osteoblast differentiation via activation of the Wnt/β-catenin signaling pathway[J]. Mol Med Rep, 2017, 15 (5): 2890- 2896.
26 Yu W , Qu H , Hu G , et al. A microfluidic-based multi-shear device for investigating the effects of low fluid-induced stresses on osteoblasts[J]. PLoS One, 2014, 9 (2): e89966.
27 Pfister C , Bozsak C , Wolf P , et al. Cell shape-dependent shear stress on adherent cells in a micro-physiologic system as revealed by FEM[J]. Physiol Meas, 2015, 36 (5): 955- 966.
[1] 帅婷, 郭艳艳, 林春平, 侯晓玫, 金婵媛. 敲减NPTX1促进人骨髓间充质干细胞成骨分化[J]. 北京大学学报(医学版), 2025, 57(1): 7-12.
[2] 欧蒙恩,丁云,唐卫峰,周永胜. 基台边缘-牙冠的平台转移结构中粘接剂流动的三维有限元分析[J]. 北京大学学报(医学版), 2023, 55(3): 548-552.
[3] 马珂楠,陈虎,沈妍汝,周永胜,王勇,孙玉春. 选择性激光熔化打印可摘局部义齿圆环形卡环固位力的有限元分析[J]. 北京大学学报(医学版), 2022, 54(1): 105-112.
[4] 任爽,时会娟,张家豪,刘振龙,邵嘉艺,朱敬先,胡晓青,黄红拾,敖英芳. 前交叉韧带重建术后移植物应力的有限元分析[J]. 北京大学学报(医学版), 2021, 53(5): 865-870.
[5] 周伟,安金刚,荣起国,张益. 下颌骨颏部骨折联合双侧髁突囊内骨折致伤机制的三维有限元分析[J]. 北京大学学报(医学版), 2021, 53(5): 983-989.
[6] 姜又升,冯琳,高学军. 垫底材料弹性模量对髓腔固位冠修复后上颌前磨牙应力分布的影响[J]. 北京大学学报(医学版), 2021, 53(4): 764-769.
[7] 林春平,卢松鹤,朱浚鑫,胡洪成,岳兆国,唐志辉. 个性化根形种植体的螺纹形态对周围牙槽骨应力分布影响的三维有限元分析[J]. 北京大学学报(医学版), 2019, 51(6): 1130-1137.
[8] 付宏宇,王芳芳,侯晓玫. 控制记忆合金丝镍钛根管锉弯曲性能有限元分析模型的构建及力学分析[J]. 北京大学学报(医学版), 2019, 51(1): 131-135.
[9] 刘霞,李英妮,孙晓麟,彭清林,卢昕,王国春. 去整合素金属蛋白酶对成骨分化的影响[J]. 北京大学学报(医学版), 2018, 50(6): 962-967.
[10] 柳大为,李晶,郭亮,荣起国,周彦恒. 舌侧矫治器关闭间隙上前牙牙周膜应力变化的三维有限元分析[J]. 北京大学学报(医学版), 2018, 50(1): 141-147.
[11] 朱云艳,李倩,张怡美,周彦恒. MAPK和AKT磷酸化下调参与Toll样受体抑制的人牙周膜干细胞的成骨分化[J]. 北京大学学报(医学版), 2018, 50(1): 33-41.
[12] 孙丽颖,郭阳,荣起国,田光磊. 舟骨骨折术后康复治疗的有限元分析[J]. 北京大学学报(医学版), 2016, 48(4): 751-封三.
[13] 赵旭, 张磊, 孙健, 杨振宇,谢秋菲. 后牙种植体支持单冠牙合面高度的三维有限元力学分析[J]. 北京大学学报(医学版), 2016, 48(1): 94-100.
[14] 甄敏,胡文杰,荣起国. 上颌中切牙冠根折行冠延长术并桩核冠修复的三维有限元分析[J]. 北京大学学报(医学版), 2015, 47(6): 1015-1021.
[15] 韩金涛, 乔惠婷, 韩旭, 李选, 和清源, 叶珊, 栾景源, 王昌明, 董国祥. 椎基底动脉延长扩张症的计算流体力学分析[J]. 北京大学学报(医学版), 2015, 47(2): 302-304.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!