北京大学学报(医学版) ›› 2021, Vol. 53 ›› Issue (4): 764-769. doi: 10.19723/j.issn.1671-167X.2021.04.024

• 论著 • 上一篇    下一篇

垫底材料弹性模量对髓腔固位冠修复后上颌前磨牙应力分布的影响

姜又升,冯琳(),高学军   

  1. 北京大学口腔医学院·口腔医院,牙体牙髓科 国家口腔医学中心 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室,北京 100081
  • 收稿日期:2021-06-15 出版日期:2021-08-18 发布日期:2021-08-25
  • 通讯作者: 冯琳 E-mail:1165155446@qq.com
  • 基金资助:
    北京市自然科学基金(7113176)

Influence of base materials on stress distribution in endodontically treated maxillary premolars restored with endocrowns

JIANG You-sheng,FENG Lin(),GAO Xue-jun   

  1. Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology,Beijing 100081, China
  • Received:2021-06-15 Online:2021-08-18 Published:2021-08-25
  • Contact: Lin FENG E-mail:1165155446@qq.com
  • Supported by:
    Beijing Natural Science Foundation(7113176)

摘要:

目的: 构建根管治疗后上颌前磨牙经髓腔固位冠修复后的三维有限元模型,分析髓室底垫底材料弹性模量对应力分布的影响。方法: 利用显微CT扫描逆向建立上颌第二前磨牙缺损的三维有限元模型,模拟髓腔固位冠进行修复。实验组采用4 种不同弹性模量的材料:光固化玻璃离子(3M Vitrebond)、流动树脂(3M Filtek Z350XT Flowable Restorative)、高强度玻璃离子(GC Fuji Ⅸ)和后牙复合树脂(3M Filtek P60)进行垫底,4 种不同类型材料的弹性模量依次是3 657、7 300、13 130、19 700 MPa。垫底厚度选择为1 mm,设无垫底材料修复为对照。采用轴向和侧向载荷(30°)分别加载200 N的力,观察应力分布情况,比较应力集中部位及应力峰值的差异。结果: 各模型牙本质和粘接层上的von Mises应力峰值(轴向/侧向加载时)如下:(1)无垫底材料时牙本质19.39/70.49 MPa,粘接层6.97/17.97 MPa;(2)光固化玻璃离子垫底时牙本质19.00/69.75 MPa,粘接层6.87/16.30 MPa;(3)流动树脂垫底时牙本质18.78/69.33 MPa,粘接层6.79/16.17 MPa;(4)高强度玻璃离子垫底时牙本质18.71/69.20 MPa,粘接层6.74/16.07 MPa;(5)后牙复合树脂垫底时牙本质18.61/69.03 MPa,粘接层6.70/16.01 MPa。具有不同弹性模量的垫底材料在相同加载条件下,在牙体组织上应力集中的部位相似,主要集中于牙颈部。侧向力加载时,应力集中的位置与轴向力时相比无明显变化,但应力值增加。有垫底层存在时,牙颈部的应力集中与无垫底层时相比缓解。随着垫底材料的弹性模量不断增加,逐渐接近牙本质的弹性模量,测得的剩余牙体组织及粘接层上的von Mises应力峰值下降。结论: 使用与牙本质弹性模量相近的后牙复合树脂类材料进行适宜厚度的粘接垫底,有利于缓解髓腔固位冠修复后上颌前磨牙牙颈部和粘接层的应力集中。

关键词: 有限元分析, 髓腔固位冠, 垫底材料, 上颌前磨牙

Abstract:

Objective: To evaluate the influence of base materials on stress distribution in endodontically treated maxillary premolars restored with endocrowns using three-dimensional finite element analysis. Methods: A maxillary second premolar was scanned by Micro-CT and a three-dimensional finite element model of ceramic endocrown with 1 mm thickness of base was established. A model without base was also established as a negative control. Four kinds of conventional base materials with different elastic modulus were adopted: light cure glass ionomer(3M Vitrebond, 3 657 MPa), flowable composite resin(3M Filtek Z350XT Flowable Restorative, 7 300 MPa), high strength glass ionomer(GC Fuji Ⅸ, 13 130 MPa), and posterior composite resin(3M Filtek P60, 19 700 MPa). With a 200 N force loaded vertically and obliquely, the distribution and magnitude of stress in the tooth tissue and adhesive layer were investigated by three-dimensional finite element analysis. Results: The maximum von Mises stress values(vertical/oblique) in dentin and adhesive layer were measured as follows: (1) no base material: 19.39/70.49 MPa in dentin and 6.97/17.97 MPa in adhesive layer; (2) light cure glass ionomer: 19.00/69.75 MPa in dentin and 6.87/16.30 MPa in adhesive layer; (3) flowable composite resin: 18.78/69.33 MPa in dentin and 6.79/16.17 MPa in adhesive layer; (4) high strength glass ionomer: 18.71/69.20 MPa in dentin and 6.74/16.07 MPa in adhesive layer; (5) posterior composite resin: 18.61/69.03 MPa in dentin and 6.70/16.01 MPa in adhesive layer. Under the same loading condition, models with different elastic moduli of base materials had similar stress distribution patterns. The von Mises stress of tooth tissue was mainly concentrated in the tooth cervix. Under oblique load, the regions where von Mises stress concentrated in were similar to those under a vertical load, but the values increased. The stress concentration in the tooth cervix was alleviated in models with base materials compared with the model without base material. The maximum von Mises stress in the tooth tissue and adhesive layer decreased when the elastic modulus of base materials increased and got close to that of dentin. Conclusion: The posterior composite resin of which the elastic moduli is high and close to that of dentin is recommended as base material for premolar endocrowns to alleviate the concentration of stress in tooth cervix and adhesive layer.

Key words: Finite element analysis, Endocrown, Base materials, Maxillary premolar

中图分类号: 

  • R782.1

图1

实体模型剖面图"

图2

上颌前磨牙髓腔固位冠模型"

图3

网格划分后的三维有限元模型"

表1

三维有限元模型材料力学参数"

Materials Elastic modulus/MPa Poisson ratio
Enamel 84 100 0.33
Dentin 18 600 0.31
Periodontal ligament 70 0.45
Cortical bone 13 700 0.30
Cancellous bone 1 370 0.30
Endocrown 10 000 0.20
Adhesive layer 5 000 0.29
Light cure glass ionomer 3 657 0.36
Flowable composite resin 7 300 0.39
High strength glass ionomer 13 130 0.30
Posterior composite resin 19 700 0.32

表2

不同垫底材料时各部分von Mises应力峰值的比较"

Items Enamel Dentin Adhesive layer Base material Restoration
Vertical Oblique Vertical Oblique Vertical Oblique Vertical Oblique Vertical Oblique
No base material 51.20 152.00 19.39 70.49 6.97 17.97 409.90 447.50
Light cure glass ionomer 50.45 151.20 19.00 69.75 6.87 16.30 4.89 14.09 448.80 429.20
Flowable composite resin 49.61 149.80 18.78 69.33 6.79 16.17 5.81 14.44 448.90 429.20
High strength glass ionomer 48.96 148.60 18.71 69.20 6.74 16.07 7.46 17.14 449.00 429.30
Posterior composite resin 48.55 147.80 18.61 69.03 6.70 16.01 8.56 20.73 449.10 429.30

图4

不同垫底材料上颌前磨牙髓腔固位冠修复后侧向力加载下的应力分布云图"

图5

不同垫底材料上颌前磨牙髓腔固位冠修复后轴向力加载下的应力分布云图"

图6

不同垫底材料侧向力加载下牙本质髓腔内侧壁的应力分布云图"

[1] Zelic K, Vukicevic A, Jovicic G, et al. Mechanical weakening of devitalized teeth: three-dimensional finite element analysis and prediction of tooth fracture [J]. Int Endod J, 2015, 48(9):850-863.
doi: 10.1111/iej.12381 pmid: 25243348
[2] 包旭东. 椅旁计算机辅助设计与辅助制作嵌体冠粘接修复大面积缺损根管治疗牙的利与弊 [J]. 中华口腔医学杂志, 2018, 53(4):221-225.
[3] Bindl A, Mörmann WH. Clinical evaluation of adhesively placed Cerec endo-crowns after 2 years-preliminary results [J]. J Adhes Dent, 1999, 1(3):255-265.
pmid: 11725673
[4] 李智, 高承志, 许永伟, 等. 铸造陶瓷高嵌体修复根管治疗后前磨牙的3年临床效果观察 [J]. 华西口腔医学杂志, 2015, 33(3):263-266.
[5] Belleflamme MM, Geerts SO, Louwette MM, et al. No post-nocore approach to restore severely damaged posterior teeth: An up to 10-year retrospective study of documented endocrown cases [J]. J Dent, 2017, 63:1-7.
doi: S0300-5712(17)30093-3 pmid: 28456557
[6] 冯娟, 郭慧慧, 申晋斌, 等. 磨牙髓室底垫底厚度对全瓷嵌体冠应力分布的影响 [J]. 牙体牙髓牙周病学杂志, 2017, 27(1):16-21.
[7] 王惠芸. 我国人牙的测量和统计 [J]. 中华口腔科杂志, 1959, 7(3):149-155.
[8] 张丹, 白保晶, 张振庭. 垫底厚度对全瓷嵌体修复应力分布影响的三维有限元分析 [J]. 北京口腔医学, 2015, 23(2):105-108.
[9] Ilie N, Hickel R. Investigations on a methacrylate-based flowable composite based on the TM technology [J]. Dent Mater, 2011, 27(4):348-355.
doi: 10.1016/j.dental.2010.11.014
[10] Yap AUJ, Wang X, Wu X, et al. Comparative hardness and modulus of tooth-colored restoratives: A depth-sensing microindentation study [J]. Biomaterials, 2004, 25(11):2179-2185.
doi: 10.1016/j.biomaterials.2003.09.003
[11] Papadogiannis DY, Lakes RS, Papadogiannis Y, et al. The effect of temperature on the viscoelastic properties of nano-hybrid composites [J]. Dent Mater, 2008, 24(2):257-266.
pmid: 17640723
[12] Zhu J, Rong Q, Wang X, et al. Influence of remaining tooth structure and restorative material type on stress distribution in endodontically treated maxillary premolars: A finite element analysis [J]. J Prosthet Dent, 2017, 117(5):646-655.
doi: 10.1016/j.prosdent.2016.08.023
[13] Coldea A, Fischer J, Swain MV, et al. Damage tolerance of indirect restorative materials (including PICN) after simulated bur adjustments [J]. Dent Mater, 2015, 31(6):684-694.
doi: 10.1016/j.dental.2015.03.007
[14] Chung SM, Yap AUJ, Koh WK, et al. Measurement of Poisson’s ratio of dental composite restorative materials [J]. Biomaterials, 2004, 25(13):2455-2460.
pmid: 14751729
[15] 冯瑞明, 薛明. 根管治疗后牙体粘接修复前的髓腔处理 [J]. 中国实用口腔科杂志, 2017, 10(4):193-197.
[16] Farah JW, Powers JM, Dennison JB, et al. Effects of cement bases on the stresses and deflections in composite restorations [J]. J Dent Res, 1976, 55(1):115-120.
pmid: 1060645
[17] Yamamoto T, Takeishi S, Momoi Y. Finite element stress analysis of indirect restorations prepared in cavity bases [J]. Dent Mater J, 2007, 26(2):274-279.
doi: 10.4012/dmj.26.274
[1] 李智,徐永祥,包旭东,王晓燕. 垫底树脂和固位深度对树脂基纳米陶瓷髓腔固位冠修复磨牙抗折性能的影响[J]. 北京大学学报(医学版), 2022, 54(1): 95-99.
[2] 马珂楠,陈虎,沈妍汝,周永胜,王勇,孙玉春. 选择性激光熔化打印可摘局部义齿圆环形卡环固位力的有限元分析[J]. 北京大学学报(医学版), 2022, 54(1): 105-112.
[3] 周伟,安金刚,荣起国,张益. 下颌骨颏部骨折联合双侧髁突囊内骨折致伤机制的三维有限元分析[J]. 北京大学学报(医学版), 2021, 53(5): 983-989.
[4] 任爽,时会娟,张家豪,刘振龙,邵嘉艺,朱敬先,胡晓青,黄红拾,敖英芳. 前交叉韧带重建术后移植物应力的有限元分析[J]. 北京大学学报(医学版), 2021, 53(5): 865-870.
[5] 林春平,卢松鹤,朱浚鑫,胡洪成,岳兆国,唐志辉. 个性化根形种植体的螺纹形态对周围牙槽骨应力分布影响的三维有限元分析[J]. 北京大学学报(医学版), 2019, 51(6): 1130-1137.
[6] 付宏宇,王芳芳,侯晓玫. 控制记忆合金丝镍钛根管锉弯曲性能有限元分析模型的构建及力学分析[J]. 北京大学学报(医学版), 2019, 51(1): 131-135.
[7] 柳大为,李晶,郭亮,荣起国,周彦恒. 舌侧矫治器关闭间隙上前牙牙周膜应力变化的三维有限元分析[J]. 北京大学学报(医学版), 2018, 50(1): 141-147.
[8] 孙丽颖,郭阳,荣起国,田光磊. 舟骨骨折术后康复治疗的有限元分析[J]. 北京大学学报(医学版), 2016, 48(4): 751-封三.
[9] 赵旭, 张磊, 孙健, 杨振宇,谢秋菲. 后牙种植体支持单冠牙合面高度的三维有限元力学分析[J]. 北京大学学报(医学版), 2016, 48(1): 94-100.
[10] 甄敏,胡文杰,荣起国. 上颌中切牙冠根折行冠延长术并桩核冠修复的三维有限元分析[J]. 北京大学学报(医学版), 2015, 47(6): 1015-1021.
[11] 周团锋, 张相皞, 王新知. 一体化计算机辅助设计与制作氧化锆桩核的三维有限元分析[J]. 北京大学学报(医学版), 2015, 47(1): 78-84.
[12] 杨雪, 荣起国, 杨亚东. 附着体类型对种植支持可摘局部义齿应力分布的影响[J]. 北京大学学报(医学版), 2015, 47(1): 72-77.
[13] 刘海鹰,王捷夫,朱震奇. 融合与Topping-off术对腰椎影响的有限元分析[J]. 北京大学学报(医学版), 2013, 45(5): 723-727.
[14] 刘诗铭, 刘玉华, 徐军. 牙槽骨高度对上颌前磨牙桩核冠修复后应力分布的影响[J]. 北京大学学报(医学版), 2013, 45(1): 44-49.
[15] 周团锋, 王新知Δ. 三种不同直径一体化计算机辅助设计与制作氧化锆全瓷桩核修复的有限元法分析[J]. 北京大学学报(医学版), 2012, 44(1): 93-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 田增民, 陈涛, Nanbert ZHONG, 李志超, 尹丰, 刘爽. 神经干细胞移植治疗遗传性小脑萎缩的临床研究(英文稿)[J]. 北京大学学报(医学版), 2009, 41(4): 456 -458 .
[2] 郭岩, 谢铮. 用一代人时间弥合差距——健康社会决定因素理论及其国际经验[J]. 北京大学学报(医学版), 2009, 41(2): 125 -128 .
[3] 成刚, 钱振华, 胡军. 艾滋病项目自愿咨询检测的技术效率分析[J]. 北京大学学报(医学版), 2009, 41(2): 135 -140 .
[4] 卢恬, 朱晓辉, 柳世庆, 郑杰, 邱晓彦. 白细胞介素2促进宫颈癌细胞系HeLaS3免疫球蛋白G的表达[J]. 北京大学学报(医学版), 2009, 41(2): 158 -161 .
[5] 袁惠燕, 张苑, 范田园. 离子交换型栓塞微球及其载平阳霉素的制备与性质研究[J]. 北京大学学报(医学版), 2009, 41(2): 217 -220 .
[6] 徐莉, 孟焕新, 张立, 陈智滨, 冯向辉, 释栋. 侵袭性牙周炎患者血清中抗牙龈卟啉单胞菌的IgG抗体水平的研究[J]. 北京大学学报(医学版), 2009, 41(1): 52 -55 .
[7] 董稳, 刘瑞昌, 刘克英, 关明, 杨旭东. 氯诺昔康和舒芬太尼用于颌面外科术后自控静脉镇痛的比较[J]. 北京大学学报(医学版), 2009, 41(1): 109 -111 .
[8] 祁琨, 邓芙蓉, 郭新彪. 纳米二氧化钛颗粒对人肺成纤维细胞缝隙连接通讯的影响[J]. 北京大学学报(医学版), 2009, 41(3): 297 -301 .
[9] Jian-wei GU, Emily YOUNG, Zhi-jun PAN, Kevan B. TUCKER, Megan SHPARAGO, Min HUANG, Amelia Purser BAILEY. SD大鼠长期高盐饮食可导致其高血压并改变肾细胞因子基因表达谱[J]. 北京大学学报(医学版), 2009, 41(5): 505 -515 .
[10] 李宏亮*, 安卫红*, 赵扬玉, 朱曦. 妊娠合并高脂血症性胰腺炎行血液净化治疗1例[J]. 北京大学学报(医学版), 2009, 41(5): 599 -601 .