Journal of Peking University (Health Sciences) ›› 2023, Vol. 55 ›› Issue (1): 167-173. doi: 10.19723/j.issn.1671-167X.2023.01.026

Previous Articles     Next Articles

Correlation analysis of vitamin D level and anti-Müllerian hormone in infertile female and the role in predicting pregnancy outcome

Xi-ya SUN1,Yi-lu CHEN1,2,Lin ZENG3,Li-ying YAN1,Jie QIAO1,Rong LI1,Xu ZHI1,*()   

  1. 1. Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital); Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
    2. Women and Children's Hospital, Qingdao University, Shandong, Qingdao 266000, China
    3. Clinical Epidemiology Research Center, Peking University Third Hospital, Beijing 100191, China
  • Received:2021-11-16 Online:2023-02-18 Published:2023-01-31
  • Contact: Xu ZHI E-mail:zhixujp@163.com
  • Supported by:
    the National Natural Science Foundation of China(81971440);the Beijing Municipal Natural Science Foundation(7212129)

RICH HTML

  

Abstract:

Objective: To investigate the relationship between serum 25(OH)D and anti-Müllerian hormone (AMH) among infertile females and their predictive impacts on in vitro fertilization and embryo transfer pregnancy outcome. Methods: Totally 756 infertile females treated with assisted reproductive technology were enrolled and divided into three groups according to their vitamin D levels (group A with serum 25(OH)D≤10 μg/L, group B with serum (10-20) μg/L, and group C with serum ≥20 μg/L). The serum AMH levels were detected. The differences among the groups were analyzed, as well as the correlation between vitamin D levels and serum AMH levels in various infertility types (fallopian tube/male factor, polycystic ovary syndrome (PCOS), ovulation disorders excluded PCOS, endometriosis, unexplained infertility, and others). Also, the predictive roles of vitamin D and AMH in pregnancy outcome in all the infertile females were discussed. Results: (1) 87.7% of the enrolled females were insufficient or deficient in vitamin D. (2) The serum AMH levels in the three groups with different vitamin D levels were 1.960 (1.155, 3.655) μg/L, 2.455 (1.370, 4.403) μg/L, 2.360 (1.430, 4.780) μg/L and there was no significant difference in serum AMH levels among the three groups (P>0.05). (3) Serum 25(OH)D and AMH levels presented seasonal variations (P < 0.05). (4) There was no prominent correlation between the serum AMH level and serum 25(OH)D level in females of various infertility types after adjusting potential confounding factors [age, body mass index (BMI), antral follicle count (AFC), vitamin D blood collection season, etc.] by multiple linear regression analysis (P>0.05). (5) After adjusting for confounding factors, such as age, BMI, number of transplanted embryos and AFC, the results of binary Logistics regression model showed that in all the infertile females, the serum AMH level was an independent predictor of biochemical pregnancy outcome (P < 0.05) while the serum 25(OH)D level might not act as a prediction factor alone (P>0.05). In the meanwhile, the serum 25(OH)D level and serum AMH level were synergistic predictors of biochemical or clinical pregnancy outcome (P < 0.05). Conclusion: Based on the current diagnostic criteria, most infertile females had vitamin D insufficiency or deficiency, but there was not significant correlation between serum 25(OH)D and ovarian reserve. While vitamin D could not be used as an independent predictor of pregnancy outcome in infertile females, the serum AMH level could predict biochemical pregnancy outcome independently or jointly with vitamin D.

Key words: Vitamin D, anti-Müllerian hormone (AMH), Infertile female, Pregnancy outcome

CLC Number: 

  • R714.8

Table 1

Clinical characteristics of the patients among three different vitamin D status"

Characteristic Group A Group B Group C P valuea
Total, n 85 578 93
Age/years, $\bar x \pm s$ 32.2±4.4 31.8±4.2 33.5±4.1 0.001
BMI/(kg/m2), $\bar x \pm s$ 22.70±3.60 22.73±3.21 22.09±3.26 0.211
Serum 25(OH)D/(μg/L), $\bar x \pm s$ 8.384±1.038 14.395±2.645 22.96±2.89 < 0.001
Duration of infertility/years, M(P25, P75) 3.0 (1.0, 4.0) 3.0 (2.0, 5.0) 3.0 (1.0, 6.0) 0.123
AFC, $\bar x \pm s$ 10.4±5.8 11.3±6.2 11.9±5.9 0.267
AMH/(μg/L), M(P25, P75) 1.960 (1.155, 3.655) 2.455 (1.370, 4.403) 2.360 (1.430, 4.780) 0.242
Basal FSH levels/(IU/L), $\bar x \pm s$ 6.845±2.202 6.801±2.753 7.282±2.065 0.321
Infertility factor, n(%) 0.069
  Fallopian tube/Male factor 36 (42.4) 231 (40.0) 37(39.8)
  PCOS 8 (9.4) 107 (18.5) 18(19.4)
  Ovulation disorders excluded PCOS 18 (21.2) 90 (15.6) 19(21.3)
  Endometriosis 5 (5.9) 19 (3.3) -
  Unexplained infertility 5 (5.9) 67 (11.6) 13(14.0)
  Others 13 (15.3) 64 (11.1) 6(6.5)
Season of blood draw, n(%) < 0.001
  Spring 60 (70.6%) 312 (54.0%) 44 (47.3%)
  Summer 9 (10.6%) 183 (31.7%) 33 (35.5%)
  Autumn - 4 (0.7%) 4 (4.3%)
  Winter 16 (18.8%) 79 (13.7%) 12 (12.9%)
Duration of treatment/d, $\bar x \pm s$ 11.0±2.2 10.9±2.5 10.2±2.9 0.015
Total dose of Gn used/IU,M(P25, P75) 2 700.0 (2 012.5, 3 375.0) 2 475.0 (1 743.8, 3 375.0) 2 400.0 (1 828.1, 3 150.0) 0.258
Number of oocytes retrieved, M(P25, P75) 10.0 (7.5, 16.5) 12.0 (8.0, 18.0) 12.0 (7.0, 17.5) 0.343

Table 2

Effect of blood sampling season on serum 25(OH)D and AMH"

Items Season of blood draw P valuea
Spring Summer Autumn Winter
Serum 25(OH)D/(μg/L), $\bar x \pm s$ 14.317±4.167 15.711±4.008 20.320±5.474 14.153±5.400 < 0.001
AMH/(μg/L), M(P25, P75) 2.245 (1.360, 3.958) 2.540 (1.315, 4.805) 3.430 (2.900, 5.060) 2.590 (1.310, 5.230) 0.046

Table 3

Correlation analysis of AMH in different types of infertility"

Infertility factor Items B SE P value
Fallopian tube/Male factor (n=304) Serum 25(OH)D -0.039 0.029 0.186
Age -0.079 0.035 0.024
BMI -0.013 0.042 0.767
AFC 0.144 0.027 < 0.001
Constant 5.326 1.580 0.001
PCOS (n=133) Serum 25(OH)D 0.122 0.095 0.201
Age -0.008 0.120 0.947
BMI -0.389 0.111 0.001
AFC 0.357 0.057 < 0.001
Constant 9.012 4.771 0.061
Ovulation disorders excluded PCOS (n=127) Serum 25(OH)D -0.005 0.014 0.734
Age 0.025 0.014 0.088
BMI -0.010 0.021 0.621
AFC 0.159 0.022 < 0.001
Constant -0.100 0.778 0.898
Endometriosis (n=24) Serum 25(OH)D 0.106 0.107 0.336
Age -0.050 0.101 0.624
BMI -0.122 0.106 0.263
AFC 0.081 0.074 0.289
Constant 5.249 4.111 0.218
Unexplained infertility (n=85) Serum 25(OH)D 0.049 0.056 0.391
Age 0.017 0.068 0.799
BMI -0.172 0.089 0.057
AFC 0.105 0.057 0.071
Constant 4.608 2.886 0.114
Others (n=83) Serum 25(OH)D -0.007 0.046 0.885
Age 0.006 0.048 0.904
BMI -0.031 0.061 0.619
AFC 0.168 0.038 < 0.001
Constant 2.009 2.241 0.373

Table 4

The role of serum 25(OH)D and AMH in predicting pregnancy outcome in the infertility female"

Items Biochemical pregnancy Clinical pregnancy
OR 95%CI P value OR 95%CI P value
AMH 1.503 1.083-2.086 0.015 1.310 0.957-1.791 0.092
Serum 25(OH)D 1.044 0.974-1.119 0.223 1.039 0.970-1.114 0.276
25(OH)D*AMH 0.978 0.958-0.997 0.027 0.982 0.962-1.002 0.071
Age 0.948 0.905-0.992 0.022 0.949 0.907-0.993 0.024
BMI 1.018 0.962-1.078 0.531 1.019 0.963-1.079 0.515
AFC 1.024 0.979-1.070 0.302 1.019 0.975-1.064 0.403
Number of embryos transferred 1.052 0.670-1.652 0.827 1.051 0.674-1.641 0.826
Constant 1.122 - 0.924 1.242 - 0.857
1 Rizzo G , Garzon S , Fichera M , et al. Vitamin D and gestational diabetes mellitus: Is there a link[J]. Antioxidants (Basel), 2019, 8 (11): 511.
doi: 10.3390/antiox8110511
2 Malloy PJ , Peng L , Wang J , et al. Interaction of the vitamin D receptor with a vitamin D response element in the mullerian-inhibiting substance (mis) promoter: Regulation of mis expression by calcitriol in prostate cancer cells[J]. Endocrinology, 2009, 150 (4): 1580- 1587.
doi: 10.1210/en.2008-1555
3 Rosen CJ , Abrams SA , Aloia JF , et al. Iom committee members respond to endocrine society vitamin D guideline[J]. J Clin Endocrinol Metab, 2012, 97 (4): 1146- 1152.
doi: 10.1210/jc.2011-2218
4 Bouillon R , Carmeliet G , Verlinden L , et al. Vitamin D and human health: Lessons from vitamin D receptor null mice[J]. Endocr Rev, 2008, 29 (6): 726- 776.
doi: 10.1210/er.2008-0004
5 Moolhuijsen LME , Visser JA . Anti-Müllerian hormone and ovarian reserve: Update on assessing ovarian function[J]. J Clin Endocrinol Metab, 2020, 105 (11): 3361- 3373.
doi: 10.1210/clinem/dgaa513
6 Dewailly D , Andersen CY , Balen A , et al. The physiology and clinical utility of anti-Müllerian hormone in women[J]. Hum Reprod Update, 2014, 20 (3): 370- 385.
doi: 10.1093/humupd/dmt062
7 Dixon KM , Mason RS . Vitamin D[J]. Int J Biochem Cell Biol, 2009, 41 (5): 982- 985.
doi: 10.1016/j.biocel.2008.06.016
8 Dennis NA , Houghton LA , Jones GT , et al. The level of serum anti-Müllerian hormone correlates with vitamin D status in men and women but not in boys[J]. J Clin Endocrinol Metab, 2012, 97 (7): 2450- 2455.
doi: 10.1210/jc.2012-1213
9 Krishnan AV , Moreno J , Nonn L , et al. Novel pathways that contribute to the anti-proliferative and chemopreventive activities of calcitriol in prostate cancer[J]. J Steroid Biochem Mol Biol, 2007, 103 (3/4/5): 694- 702.
10 Xu J , Hennebold JD , Seifer DB . Direct vitamin D3 actions on rhesus macaque follicles in three-dimensional culture: Assessment of follicle survival, growth, steroid, and anti-Müllerian hormone production[J]. Fertil Steril, 2016, 106 (7): 1815e1811- 1820e1811.
11 Xu J, Lawson MS, Xu F, et al. Vitamin D3 regulates follicular development and intrafollicular vitamin D biosynthesis and signaling in the primate ovary[J/OL]. Front Physiol, 2018, 9: 1600(2018-11-14)[2021-11-01]. https://www.frontiersin.org/articles/10.3389/fphys.2018.01600/full.
12 Merhi Z , Doswell A , Krebs K , et al. Vitamin D alters genes involved in follicular development and steroidogenesis in human cumulus granulosa cells[J]. J Clin Endocrinol Metab, 2014, 99 (6): E1137- E1145.
doi: 10.1210/jc.2013-4161
13 Drakopoulos P , van de Vijver A , Schutyser V , et al. The effect of serum vitamin D levels on ovarian reserve markers: A prospective cross-sectional study[J]. Hum Reprod, 2017, 32 (1): 208- 214.
14 Fabris AM , Cruz M , Iglesias C , et al. Impact of vitamin D levels on ovarian reserve and ovarian response to ovarian stimulation in oocyte donors[J]. Reprod Biomed Online, 2017, 35 (2): 139- 144.
doi: 10.1016/j.rbmo.2017.05.009
15 Merhi ZO , Seifer DB , Weedon J , et al. Circulating vitamin D correlates with serum antimüllerian hormone levels in late-reproductive-aged women: Women's interagency HIV study[J]. Fertil Steril, 2012, 98 (1): 228- 234.
doi: 10.1016/j.fertnstert.2012.03.029
16 Bednarska-Czerwińska A , Olszak-Wąsik K , Olejek A , et al. Vitamin D and anti-müllerian hormone levels in infertility treatment: The change-point problem[J]. Nutrients, 2019, 11 (5): 1053.
doi: 10.3390/nu11051053
17 胡贻椿, 陈竞, 王睿, 等. 我国育龄女性维生素D营养状况分析[J]. 营养学报, 2020, 42 (6): 537- 541.
18 孙丽君, 冯营营, 胡继君, 等. 维生素D与不孕女性卵巢储备标志物的相关性分析[J]. 中华生殖与避孕杂志, 2017, 37 (9): 706- 710.
19 Visser JA , Themmen APN . Anti-müllerian hormone and folliculogenesis[J]. Mol Cell Endocrinol, 2005, 234 (1/2): 81- 86.
20 Moslehi N , Shab-Bidar S , Ramezani Tehrani F , et al. Is ovarian reserve associated with body mass index and obesity in reproductive aged women? A meta-analysis[J]. Menopause, 2018, 25 (9): 1046- 1055.
doi: 10.1097/GME.0000000000001116
21 Merhi Z , Buyuk E , Berger DS , et al. Leptin suppresses anti-mullerian hormone gene expression through the JAK2/STAT3 pathway in luteinized granulosa cells of women undergoing IVF[J]. Hum Reprod, 2013, 28 (6): 1661- 1669.
doi: 10.1093/humrep/det072
22 Ligon S , Lustik M , Levy G , et al. Low antimüllerian hormone (AMH) is associated with decreased live birth after in vitro fertilization when follicle-stimulating hormone and AMH are discordant[J]. Fertil Steril, 2019, 112 (1): 73e71- 81e71.
23 Ciepiela P , Dulęba AJ , Kario A , et al. Oocyte matched follicular fluid anti-müllerian hormone is an excellent predictor of live birth after fresh single embryo transfer[J]. Hum Reprod, 2019, 34 (11): 2244- 2253.
24 Wu CH , Yang SF , Tsao HM , et al. anti-Müllerian hormone gene polymorphism is associated with clinical pregnancy of fresh IVF cycles[J]. Int J Environ Res Public Health, 2019, 16 (5): 841.
doi: 10.3390/ijerph16050841
25 Chen Y, Zhi X. Roles of vitamin D in reproductive systems and assisted reproductive technology[J/OL]. Endocrinology, 2020, 161(4): bqaa023(2020-02-18)[2021-11-01]. https://academic.oup.com/endo/article/161/4/bqaa023/5739616?login=true.
[1] Ting JING,Hua JIANG,Ting LI,Qianqian SHEN,Lan YE,Yindan ZENG,Wenxin LIANG,Gang FENG,Man-Yau Szeto Ignatius,Yumei ZHANG. Relationship between serum 25-hydroxyvitamin D and handgrip strength in middle-aged and elderly people in five cities of Western China [J]. Journal of Peking University (Health Sciences), 2024, 56(3): 448-455.
[2] Huichao MA,Jun LI,Yongqing WANG. Clinical characteristics of pregnancy complicated with inflammatory bowel disease [J]. Journal of Peking University (Health Sciences), 2024, 56(2): 260-266.
[3] Fang-ning YOU,Liang LUO,Xiang-jun LIU,Xue-wu ZHANG,Chun LI. Analysis of pregnancy outcomes, disease progression, and risk factors in patients with undifferentiated connective tissue disease [J]. Journal of Peking University (Health Sciences), 2023, 55(6): 1045-1052.
[4] Lei BAO,Xia-xia CAI,Ming-yuan ZHANG,Lei-lei REN. Effect of vitamin D3 on mild cognitive impairment in type 2 diabetic mice and its possible mechanism [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 587-592.
[5] HE Wei,YANG Si-wen,CHEN Juan,ZHU Xiao-jun,CHEN Zhi-zhong,MA Wen-jun. Effects of 275 nm and 310 nm ultraviolet irradiation on bone metabolism in ovariectomized osteoporotic rats [J]. Journal of Peking University (Health Sciences), 2022, 54(2): 236-243.
[6] Jian-mei ZOU,Li-jun WU,Cai-nan LUO,Ya-mei SHI,Xue WU. Relationship of serum 25- hydroxy vitamin D and systemic lupus erythematosus [J]. Journal of Peking University (Health Sciences), 2021, 53(5): 938-941.
[7] XIE Ling-ding, WANG Na, ZHANG Jin-ping, WANG Xin, CHEN Xiao-ping, ZHANG Bo, BU Shi. Normocalcemic with elevated post-operative parathormone in primary hyperpara-thyroidism: 9 case reports and literature review [J]. Journal of Peking University (Health Sciences), 2021, 53(3): 573-579.
[8] LIU Kai-ning, MENG Huan-xin, HOU Jian-xia. Influence of vitamin D receptor FokⅠ polymorphism on expression of CYP24A1 in periodontal cells [J]. Journal of Peking University(Health Sciences), 2018, 50(1): 13-19.
[9] CAO Xiao-Jing, HE Lu, MENG Huan-Xin, LI Peng, CHEN Zhi-Bin. Relationship between vitamin D receptor gene polymorphisms and chronic periodontitis [J]. Journal of Peking University(Health Sciences), 2015, 47(4): 697-702.
[10] ZHENG Xiao-Juan, DENG Xiao-Li, LIU Xiang-Yuan. Pregnancy outcome in 54 patients with antiphospholipid syndrome:a retrospective clinical study [J]. Journal of Peking University(Health Sciences), 2014, 46(2): 323-328.
[11] REN Yun, YANG Shuo, YANG Rui, LI Rong, CHEN Xin-na, WANG Hai-yan, MA Cai-hong, LIU Ping, QIAO Jie. Comparison of gonadotropin releasing hormone agonist long protocol and gonadotropin releasing hormone antagonist protocol in infertile women [J]. Journal of Peking University(Health Sciences), 2013, 45(6): 877-881.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Journal of Peking University(Health Sciences), 2007, 39(4): 434 -436 .
[2] . [J]. Journal of Peking University(Health Sciences), 2001, 33(1): 50 -53 .
[3] . [J]. Journal of Peking University(Health Sciences), 2001, 33(6): 540 -544 .
[4] . [J]. Journal of Peking University(Health Sciences), 2002, 34(1): 33 -35 .
[5] . [J]. Journal of Peking University(Health Sciences), 2002, 34(1): 93 -94 .
[6] . [J]. Journal of Peking University(Health Sciences), 2002, 34(2): 97 -98 .
[7] . [J]. Journal of Peking University(Health Sciences), 2002, 34(2): 140 -143 .
[8] . [J]. Journal of Peking University(Health Sciences), 2010, 42(4): 476 -479 .
[9] . [J]. Journal of Peking University(Health Sciences), 2008, 40(2): 208 -210 .
[10] . [J]. Journal of Peking University(Health Sciences), 2010, 42(5): 520 -525 .