Journal of Peking University (Health Sciences) ›› 2024, Vol. 56 ›› Issue (4): 722-728. doi: 10.19723/j.issn.1671-167X.2024.04.028

Previous Articles     Next Articles

Relationship between lipid metabolism molecules in plasma and carotid atheroscle-rotic plaques, traditional cardiovascular risk factors, and dietary factors

Jing HE1,2,Zhongze FANG3,Ying YANG4,Jing LIU5,Wenyao MA2,Yong HUO4,Wei GAO6,Yangfeng WU1,2,7,8,Gaoqiang XIE1,2,7,8,*()   

  1. 1. Peking University First Hospital, Beijing 100034, China
    2. Clinical Research Institute, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
    3. College of Public Health, Tianjin Medical University, Tianjin 300070, China
    4. Department of Cardiology, Peking University First Hospital, Beijing 100034, China
    5. Center of Clinical and Epidemiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
    6. Department of Cardiology, Peking University Third Hospital, Beijing 100191, China
    7. Key Laboratory of Epidemiology of Major Diseases (Peking University), Beijing 100191, China
    8. State Key Laboratory of Vascular Homeostasis and Remodeling (Peking University), Beijing 100191, China
  • Received:2021-06-11 Online:2024-08-18 Published:2024-07-23
  • Contact: Gaoqiang XIE E-mail:gxie@bjmu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(30872168);the National Natural Science Foundation of China(81473044)

Abstract:

Objective: To explore the relationship between lipid metabolism molecules in plasma and carotid atherosclerotic plaques, traditional cardiovascular risk factors and possible dietary related factors. Methods: Firstly, among 1 312 community people from those who participated in a 10-year follow-up study of subclinical atherosclerosis cohort in Shijingshan District, Beijing, 85 individuals with 2 or more carotid soft plaques or mixed plaques and 89 healthy individuals without plaques were selected according to the inclusive and the exclusive criteria (< 70 years, not having clinical cardiovascular disease and other diseases, etc.). Secondly, 10 cases and 10 controls were randomly selected in the above 85 and 89 individuals respectively. Carotid plaques were detected using GE Vivid i Ultrasound Machine with 8L detector. Lipid metabolism molecules were detected by high performance liquid chromatography-mass spectrometry. The detection indexes included 113 lipid metabolism molecules. Traditional cardiovascular risk factors were collected by unified standard questionnaires, and dietary related factors were collected by main dietary frequency and weight scale. The difference of lipid metabolism molecules between the case group and the control group was analyzed by Wilcoxin rank test. In the control group, the Spearman correlation method was used to analyze the correlation between statistically significant lipid metabolism molecules and traditional cardiovascular risk factors and dietary factors. Results: Among the 113 lipid metabolism molecules, 53 lipid metabolism molecules were detected. C24:0 sphingomyelin (SM), C22:0/ C24:0 ceramide molecules, C18:0 phosphoethanolamine (PE) molecules, and C18:0/C18:2 (Cis) phosphatidylcholine (PC) were significantly higher in the carotid atherosclerotic plaque group than in the control group. The correlation analysis showed that C24:0 SM was significantly positively correlated with low density lipoprotein cholesterol (LDL-C, r=0.636, P < 0.05), C18:2 (Cis) PC (DLPC) was significantly positively correlated with systolic pressure (r=0.733, P < 0.05), C18:0 PE was significantly positively correlated with high sensitivity C-response protein (r=0.782, P < 0.01), C22:0, C24:0 ceramide and C18:0 PE were negatively correlated with vegetable intake (r=-0.679, P < 0.05;r=-0.711, P < 0.05;r=-0.808, P < 0.01), C24:0 ceramide was also negatively correlated with beans food intake (r=-0.736, P < 0.05) in the control group. Conclusions: The increase of plasma C24:0 SM, C22:0, C24:0 ceramide, C18:0 PE, C18:2 (Cis) PC (DLPC), C18:0 PC (DSPC) may be new risk factors for human atherosclerotic plaques. These molecules may be related to blood lipid, blood pressure or inflammatory level and the intake of vegetables and soy products, but the nature of the association needs to be verified in a larger sample population.

Key words: Lipid metabolism molecules, Atherosclerosis, Correlation analysis, Risk factors

CLC Number: 

  • R543.4

Table 1

Demographic indicators of atherosclerotic plague group and control group"

Variables Atherosclerotic plaque group (n=10) Control group (n=10) P value
Age/years 61.68 (58.42-67.04) 62.97 (55.92-68.62) 0.734
Male 6 (60) 5 (50) 1.000
Smoking 2 (20) 2 (20) 1.000
BMI/(kg/m2) 24.80 (19.75-28.89) 26.11 (18.00-29.59) 0.473
SBP/mmHg 139.50 (111.67-184.67) 123.67 (110.33-149.00) 0.140
DBP/mmHg 78.50 (71.67-119.00) 72.00 (67.00-97.67) 0.162
Glucose/(mmol/L) 5.64 (4.38-6.79) 5.24 (4.89-9.43) 0.623
LDL-C/(mmol/L) 4.21 (2.08-6.00) 3.05 (1.26-4.57) 0.054
hs-CRP/(mg/L) 2.37 (0.57-6.75) 1.51 (0.61-7.39) 0.473
History of CVD
Hypertension 7 (70) 4 (40) 0.370
Diabetes 2 (20) 3 (30) >0.999
Angina/MI 0 0 -
Stroke 0 0 -
Treatment
Antihypertensive 3 (30) 3 (30) 1.0
Lipid lowering 0 (0) 0 (0) -
Insulin 0 3 (30) 0.211
Oral hypoglycemic drugs 2 (20) 1 (10) >0.999
Aspirin 3 (30) 1 (10) 0.582

Figure 1

Peak area of lipid molecular detection"

Table 2

Lipid metabolism molecules between atherosclerotic plaque group and control group"

Items Lipidomics indications Total(n=20) Control group (n=10) Atherosclerotic plaque group (n=10) P value
Ceramide C24:0 ceramide 1.39 (0.75-3.03) 1.25 (0.75-2.14) 1.63 (1.27-3.03) 0.009
C22:0 ceramide 0.45 (0.21-1.02) 0.42 (0.21-0.57) 0.52 (0.43-1.02) 0.011
C24:1 ceramide 0.62 (0.27-1.32) 0.49 (0.27-0.70) 0.69 (0.41-1.32) 0.054
C20:0 ceramide 0.09 (0.04-0.20) 0.08 (0.04-0.12) 0.10 (0.05-0.20) 0.076
Phosphatidylcholine (PC) C18:2 (Cis) PC 8.94 (3.90-15.85) 7.31 (3.90-15.70) 10.71 (8.27-15.85) 0.021
C18:0 PC 0.14 (0.06-0.25) 0.12 (0.06-0.21) 0.16 (0.11-0.25) 0.045
C16:1 (Δ9-Cis) PC 1.27 (0.53-2.05) 1.09 (0.53-2.05) 1.62 (0.87-1.93) 0.076
C18:0-22:6 PC 6.76 (3.71-15.14) 5.34 (3.71-15.14) 7.73 (5.71-11.07) 0.162
C20:4 (Cis) PC 0.22 (0.06-0.45) 0.20 (0.06-0.45) 0.24 (0.12-0.39) 0.186
Phosphorylethanolamine (PE) C18:0 PE 0.02 (0.01-0.12) 0.01 (0.01-0.03) 0.02 (0.01-0.12) 0.045
C18:0-C18:1 PE 0.37 (0.14-1.35) 0.27 (0.14-0.50) 0.40 (0.19-1.35) 0.121
C18:0-C18:2 PE 1.90 (0.79-4.14) 1.66 (0.79-4.14) 1.99 (1.15-3.17) 0.121
Sphingomyelin (SM) C24:0 SM 12.19 (6.62-16.09) 10.65 (6.62-15.24) 13.35 (10.44-16.09) 0.017

Table 3

Spearman correlation coefficient of lipid metabolism molecules with cardiovascular risk factors and dietary factors in healthy group"

Cardiovascular risk factors C22:0 ceramide C24:0 ceramide C18:2 (Cis) PC (DLPC) C18:0 PC (DSPC) C18:0 PE C24:0 SM
LDL-C 0.188 0.079 -0.091 0.030 -0.115 0.636*
Smoking count 0.147 -0.009 -0.277 -0.398 -0.138 0.389
BMI 0.055 -0.006 -0.370 -0.115 0.479 -0.006
SBP 0.576 0.430 0.733* 0.139 0.261 0.042
DBP 0.430 0.236 0.164 0.200 -0.042 0.188
Fasting blood sugar 0.030 0.103 0.006 -0.292 -0.213 -0.389
hs-CRP 0.297 0.200 0.115 0.345 0.782** -0.406
Dietary
Staple food -0.617 -0.541 0.171 -0.021 -0.350 0.212
Bean products -0.334 -0.736* -0.057 0.334 -0.145 -0.094
Chicken and duck -0.069 -0.130 -0.034 0.021 -0.370 0.384
Beef, pork, and lamb 0.113 0.094 -0.044 -0.183 -0.378 0.390
Fish -0.268 -0.268 0.482 0.389 -0.322 0.409
Eggs -0.228 -0.319 0.156 0.410 -0.189 -0.286
Milk and dairy products -0.308 0.130 -0.260 -0.082 -0.185 0.226
Vegetables -0.679* -0.711* -0.162 -0.129 -0.808** 0.323
Fruit -0.020 0.203 -0.334 0.400 0.374 0.361
Nut -0.256 -0.479 -0.479 0.177 -0.059 0.007
Pickle 0.000 0.000 -0.355 -0.355 0.355 -0.284
1 Alizargar J , Bai CH . Factors associated with carotid Intima media thickness and carotid plaque score in community-dwelling and non-diabetic individuals[J]. BMC Cardiovasc Disord, 2018, 18 (1): 21.
doi: 10.1186/s12872-018-0752-1
2 Gonçalves I , Edsfeldt A , Colhoun HM , et al. Association between renin and atherosclerotic burden in subjects with and without type 2 diabetes[J]. BMC Cardiovasc Disord, 2016, 16 (1): 171.
doi: 10.1186/s12872-016-0346-8
3 Lou Y , Li B , Su L , et al. Association between body mass index and presence of carotid plaque among low-income adults aged 45 years and older: A population-based cross-sectional study in rural China[J]. Oncotarget, 2017, 8 (46): 81261- 81272.
doi: 10.18632/oncotarget.17608
4 Yang D , Iyer S , Gardener H , et al. Cigarette smoking and carotid plaque echodensity in the Northern Manhattan study[J]. Cerebrovasc Dis, 2015, 40 (3/4): 136- 143.
5 Arnold N , Koenig W . Atherosclerosis as an inflammatory disease-pathophysiology, clinical relevance and therapeutic implications[J]. Dtsch Med Wochenschr, 2019, 144 (5): 315- 321.
doi: 10.1055/a-0657-1595
6 谢高强, 于晖, 陈敬洲, 等. 基因变异及心血管危险因素与单核细胞分泌白细胞介素6和10的关系[J]. 北京大学学报(医学版), 2014, 46 (4): 589- 595.
doi: 10.3969/j.issn.1671-167X.2014.04.022
7 Xie G , Myint PK , Zaman MJ , et al. Relationship of serum interleukin-10 and its genetic variations with ischemic stroke in a Chinese general population[J]. PLoS One, 2013, 8 (9): e74126.
doi: 10.1371/journal.pone.0074126
8 Xie G , Myint PK , Zhao L , et al. Relationship between-592A/C polymorphism of interleukin-10 (IL-10) gene and risk of early carotid atherosclerosis[J]. Int J Cardiol, 2010, 143 (1): 102- 104.
doi: 10.1016/j.ijcard.2008.11.173
9 Paapstel K , Kals J , Eha J , et al. Inverse relations of serum phosphatidylcholines and lysophosphatidylcholines with vascular damage and heart rate in patients with atherosclerosis[J]. Nutr Metab Cardiovasc Dis, 2018, 28 (1): 44- 52.
doi: 10.1016/j.numecd.2017.07.011
10 Pechlaner R , Kiechl S , Mayr M . Potential and caveats of lipidomics for cardiovascular disease[J]. Circulation, 2016, 134 (21): 1651- 1654.
doi: 10.1161/CIRCULATIONAHA.116.025092
11 罗杰斯, 谢高强, 于洋, 等. 中老年人群颈动脉内中膜厚度分布特征及相关因素分析[J]. 中国循环杂志, 2013, 28 (4): 278- 281.
doi: 10.3969/j.issn.1000-3614.2013.04.012
12 Pavoine C , Pecker F . Sphingomyelinases: Their regulation and roles in cardiovascular pathophysiology[J]. Cardiovasc Res, 2009, 82 (2): 175- 183.
doi: 10.1093/cvr/cvp030
13 Kasumov T , Li L , Li M , et al. Ceramide as a mediator of non-alcoholic Fatty liver disease and associated atherosclerosis[J]. PLoS One, 2015, 10 (5): e0126910.
doi: 10.1371/journal.pone.0126910
14 Colombaioni L , Garcia-Gil M . Sphingolipid metabolites in neural signalling and function[J]. Brain Res Brain Res Rev, 2004, 46 (3): 328- 355.
doi: 10.1016/j.brainresrev.2004.07.014
15 Kolak M , Westerbacka J , Velagapudi VR , et al. Adipose tissue inflammation and increased ceramide content characterize subjects with high liver fat content independent of obesity[J]. Diabetes, 2007, 56 (8): 1960- 1968.
doi: 10.2337/db07-0111
16 Zhao W , Wang X , Deik AA , et al. Elevated plasma ceramides are associated with antiretroviral therapy use and progression of carotid artery atherosclerosis in HIV infection[J]. Circulation, 2019, 139 (17): 2003- 2011.
doi: 10.1161/CIRCULATIONAHA.118.037487
17 Yin W , Li F , Tan X , et al. Plasma ceramides and cardiovascular events in hypertensive patients at high cardiovascular risk[J]. Am J hypertens, 2020, 34 (11): 1209- 1216.
18 Jiang XC , Liu J . Sphingolipid metabolism and atherosclerosis[J]. Handb Exp Pharmacol, 2013, (216): 133- 146.
19 van der Veen JN , Kennelly JP , Wan S , et al. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease[J]. Biochim Biophys Acta Biomembr, 2017, 1859 (9 Pt B): 1558- 1572.
20 Vettraino C , Peracchi A , Donini S , et al. Structural characterization of human O-phosphoethanolamine phospho-lyase[J]. Acta Crystallogr F Struct Biol Commun, 2020, 76 (Pt 4): 160- 167.
21 Singh SK , Suresh MV , Prayther DC , et al. C-reactive protein-bound enzymatically modified low-density lipoprotein does not transform macrophages into foam cells[J]. J Immunol, 2008, 180 (6): 4316- 4322.
doi: 10.4049/jimmunol.180.6.4316
22 Floegel A , Kühn T , Sookthai D , et al. Serum metabolites and risk of myocardial infarction and ischemic stroke: A targeted metabolomic approach in two German prospective cohorts[J]. Eur J Epidemiol, 2018, 33 (1): 55- 66.
doi: 10.1007/s10654-017-0333-0
23 Park J , Jung TW , Chung YH , et al. 1, 2-Dilinoleoyl-Sn-glycero-3-phosphocholine increases insulin sensitivity in palmitate-treated myotubes and induces lipolysis in adipocytes[J]. Biochem Biophys Res Commun, 2020, 533 (1): 162- 167.
doi: 10.1016/j.bbrc.2020.09.019
24 Yang L , Wang L , Deng Y , et al. Serum lipids profiling perturbances in patients with ischemic heart disease and ischemic cardiomyopathy[J]. Lipids Health Dis, 2020, 19 (1): 89.
doi: 10.1186/s12944-020-01269-9
25 Hilvo M , Simolin H , Metso J , et al. PCSK9 inhibition alters the lipidome of plasma and lipoprotein fractions[J]. Atherosclerosis, 2018, 269, 159- 165.
[1] Bo PANG,Tongjun GUO,Xi CHEN,Huaqi GUO,Jiazhang SHI,Juan CHEN,Xinmei WANG,Yaoyan LI,Anqi SHAN,Hengyi YU,Jing HUANG,Naijun TANG,Yan WANG,Xinbiao GUO,Guoxing LI,Shaowei WU. Personal nitrogen oxides exposure levels and related influencing factors in adults over 35 years old in Tianjin and Shanghai [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 700-707.
[2] Yan CHEN,Kuangmeng LI,Kai HONG,Shudong ZHANG,Jianxing CHENG,Zhongjie ZHENG,Wenhao TANG,Lianming ZHAO,Haitao ZHANG,Hui JIANG,Haocheng LIN. Retrospective study on the impact of penile corpus cavernosum injection test on penile vascular function [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 680-686.
[3] Ye YAN,Xiaolong LI,Haizhui XIA,Xuehua ZHU,Yuting ZHANG,Fan ZHANG,Ke LIU,Cheng LIU,Lulin MA. Analysis of risk factors for long-term overactive bladder after radical prostatectomy [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 589-593.
[4] Zuhong ZHANG,Tianjiao CHEN,Jun MA. Associations between puberty timing and cardiovascular metabolic risk factors among primary and secondary students [J]. Journal of Peking University (Health Sciences), 2024, 56(3): 418-423.
[5] Shan CAI,Yihang ZHANG,Ziyue CHEN,Yunfe LIU,Jiajia DANG,Di SHI,Jiaxin LI,Tianyu HUANG,Jun MA,Yi SONG. Status and pathways of factors influencing physical activity time among elementary and junior high school students in Beijing [J]. Journal of Peking University (Health Sciences), 2024, 56(3): 403-410.
[6] Yuting LIN,Huali WANG,Yu TIAN,Litong GONG,Chun CHANG. Factors influencing cognitive function among the older adults in Beijing [J]. Journal of Peking University (Health Sciences), 2024, 56(3): 456-461.
[7] Xiaoqian SI,Xiujuan ZHAO,Fengxue ZHU,Tianbing WANG. Risk factors for acute respiratory distress syndrome in patients with traumatic hemorrhagic shock [J]. Journal of Peking University (Health Sciences), 2024, 56(2): 307-312.
[8] Jinrong ZHU,Yana ZHAO,Wei HUANG,Weiwei ZHAO,Yue WANG,Song WANG,Chunyan SU. Clinical characteristics of COVID-19 infection in patients undergoing hemodialysis [J]. Journal of Peking University (Health Sciences), 2024, 56(2): 267-272.
[9] Zhanhong LAI,Jiachen LI,Zelin YUN,Yonggang ZHANG,Hao ZHANG,Xiaoyan XING,Miao SHAO,Yuebo JIN,Naidi WANG,Yimin LI,Yuhui LI,Zhanguo LI. A unicenter real-world study of the correlation factors for complete clinical response in idiopathic inflammatory myopathies [J]. Journal of Peking University (Health Sciences), 2024, 56(2): 284-292.
[10] Xiaoqiang LIU,Yin ZHOU. Risk factors of perioperative hypertension in dental implant surgeries with bone augmentation [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 93-98.
[11] Yangyang LI,Lin HOU,Zijun MA,Shanyamei HUANG,Jie LIU,Chaomei ZENG,Jiong QIN. Association of pregnancy factors with cow's milk protein allergy in infants [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 144-149.
[12] Yu-fei LI,Ya-ni YAN,Jia-yang JIN,Chun LI,Qiu-yan PEI. Clinical characteristics of fetal cardiac disease in patients with anti-SSA antibody positive [J]. Journal of Peking University (Health Sciences), 2023, 55(6): 1053-1057.
[13] Liang LUO,Yun LI,Hong-yan WANG,Xiao-hong XIANG,Jing ZHAO,Feng SUN,Xiao-ying ZHANG,Ru-lin JIA,Chun LI. Anti-endothelial cell antibodies in predicting early miscarriage [J]. Journal of Peking University (Health Sciences), 2023, 55(6): 1039-1044.
[14] Hui WEI, Ci-dan-yang-zong, Yi-xi-la-mu, Bai-ma-yang-jin. Risk factors associated with different types of Henoch-Schönlein purpura in Tibetan patients at high altitude [J]. Journal of Peking University (Health Sciences), 2023, 55(5): 923-928.
[15] Wei ZHU,Bin ZHU,Xiao-guang LIU. Influential factors related to functional status after full-endoscopic lumbar discectomy [J]. Journal of Peking University (Health Sciences), 2023, 55(3): 537-542.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!