Journal of Peking University (Health Sciences) ›› 2024, Vol. 56 ›› Issue (5): 874-883. doi: 10.19723/j.issn.1671-167X.2024.05.019

Previous Articles     Next Articles

Construction and validation of a nomogram for predicting in-hospital postoperative heart failure in elderly patients with hip fracture

Yuanmei LIU, Yicheng FU, Jingxin HAO, Fuchun ZHANG, Huilin LIU*()   

  1. Department of Geriatrics, Peking University Third Hospital, Beijing 100191, China
  • Received:2024-01-18 Online:2024-10-18 Published:2024-10-16
  • Contact: Huilin LIU E-mail:0563178481@bjmu.edu.cn
  • Supported by:
    Supported by the Chronic Disease Prevention and Health Education Research Project(BJMB0012023024006);the Key Clinical Program of Peking University Third Hospital(BYSYDL2021022)

RICH HTML

  

Abstract:

Objective: To construct and validate a nomogram for prediction of in-hospital postoperative heart failure (PHF) in elderly patients with hip fracture. Methods: This was a retrospective cohort study. The patients aged ≥65 years undergoing hip fracture surgery in Peking University Third Hospital from July 2015 to December 2023 were enrolled. The patients admitted from July 2015 to December 2021 were divided into a development cohort, and the others admitted from January 2022 to December 2023 in to a validation cohort. The patients ' clinical data were collected from the electronic medical record system. Univariate and multivariate Logistic regression were employed to screen the predictors for PHF in the patients. The R software was used to construct a nomogram. Internal and external validation were performed by the Bootstrap method. The discriminatory ability of the model was determined by the area under the receiver operating characteristic curve (AUC). The calibration was evaluated by the calibration plot and Hosmer-Lemeshow goodness-of-fit test. Decision curve analysis (DCA) was performed to assess the clinical utility. Results: In the study, 944 patients were eventually enrolled in the development cohort, and 469 were in the validation cohort. A total of 54 (5.7%) patients developed PHF in the deve-lopment cohort, and 18 (3.8%) patients had PHF in the validation cohort. Compared with those from non-PHF group, the patients from PHF group were older, had higher prevalence of heart disease, hypertension and pulmonary disease, had poorer American Society of Anesthesiologists (ASA) classification (Ⅲ-Ⅳ), presented with lower preoperative hemoglobin level, lower left ventricular ejection fraction, higher preoperative serum creatinine, received hip arthroplasty and general anesthesia more frequently. Multivariate Logistic regression analysis showed that age (OR=1.071, 95%CI: 1.019-1.127, P=0.008), history of heart disease (OR=5.360, 95%CI: 2.808-10.234, P < 0.001), preoperative hemoglobin level (OR=0.979, 95%CI: 0.960-0.999, P=0.041), preoperative serum creatinine (OR=1.007, 95%CI: 1.001-1.013, P=0.015), hip arthroplasty (OR=2.513, 95%CI: 1.259-5.019, P=0.009), and general anesthesia (OR=2.024, 95%CI: 1.053-3.890, P=0.034) were the independent predictors for PHF in elderly patients with hip fracture. Four preoperative predictors were incorporated to construct a preoperative nomogram for PHF in the patients. The AUC values of the nomogram in internal and external validation were 0.818 (95%CI: 0.768-0.868) and 0.873 (95%CI: 0.805-0.929), indicating its good accuracy. The calibration plots and Hosmer-Lemeshow goodness-of-fit test (internal validation: χ2=9.958, P=0.354; external validation: χ2=5.477, P=0.791) showed its satisfactory calibration. Clinical usefulness of the nomogram was confirmed by decision curve analysis. Conclusion: An easy-to-use nomogram for prediction of in-hospital PHF in elderly patients with hip fracture is well developed. This preoperative risk assessment tool can effectively identify patients at high risk of PHF and may be useful for perioperative management optimization.

Key words: Elderly, Hip fracture, Heart failure, Nomograms

CLC Number: 

  • R541.6

Figure 1

Flowchart of the study design"

Table 1

Comparison of baseline characteristics and outcome between the development cohort and validation cohort"

Variables Development cohort (n=944) Validation cohort (n=469) Z/χ2 P
Age/years 81.0 (74.0, 85.0) 80.0 (72.0, 86.0) -1.198 0.231
Gender 0.897 0.344
    Female 680 (72.0) 349 (74.4)
    Male 264 (28.0) 120 (25.6)
BMI/(kg/m2) 7.575 0.023
     < 18.5 137 (14.5) 44 (9.4)
    18.5-28.0 715 (75.7) 380 (81.0)
    >28.0 92 (9.7) 45 (9.6)
Medical history
    Heart disease 118 (12.5) 43 (9.2) 3.445 0.063
    Diabetes mellitus 265 (28.1) 136 (29.0) 0.132 0.716
    Hypertension 532 (56.4) 276 (58.8) 0.795 0.373
    Cerebrovascular disease 168 (17.8) 88 (18.8) 0.197 0.657
    Pulmonary disease 100 (10.6) 27 (5.8) 8.959 0.003
Type of fracture 8.057 0.018
    Femoral neck fracture 409 (43.3) 195 (41.6)
    Femoral intertrochanteric fracture 446 (47.3) 248 (52.9)
    Femoral subtrochanteric fracture 89 (9.4) 26 (5.5)
Time from injury to surgery/d 4.00 (2.00, 7.00) 4.00 (2.00, 6.00) -0.914 0.361
ASA classification 3.285 0.070
    Ⅰ-Ⅱ 758 (80.3) 357 (76.1)
    Ⅲ-Ⅳ 186 (19.7) 112 (23.9)
Preoperative blood transfusion 1.523 0.217
    <400 mL 888 (94.1) 463 (96.3)
    ≥400 mL 56 (5.9) 18 (3.7)
Preoperative SBP/mmHg 135.0 (125.0, 146.0) 133.0 (124.0, 143.0) -2.015 0.44
Preoperative DBP/mmHg 76.0 (68.0, 80.0) 76.0 (67.8, 80.0) -0.060 0.952
Preoperative heart rate/(beat/min) 76.0 (70.0, 80.0) 75.0 (70.0, 80.0) -2.345 0.019
Preoperative laboratory examinations
    WBC/(×109/L) 9.14 (7.34, 11.18) 9.18 (7.44, 11.40) -0.526 0.599
    HGB/(g/L) 120.00 (108.00, 132.00) 119.00 (105.00, 132.00) -1.162 0.245
    PLT/(×109/L) 194.00 (157.00, 242.00) 190.00 (157.00, 242.00) -0.404 0.686
    ALT/(U/L) 20.00 (16.00, 26.00) 19.00 (15.00, 24.03) -0.785 0.432
    Scr/(μmol/L) 65.00 (54.00, 79.00) 61.00 (53.00, 78.00) -2.310 0.021
    K/(μmol/L) 4.08 (3.80, 4.40) 4.00 (3.75, 4.28) -2.409 0.016
    Na/(μmol/L) 138.70 (136.00, 141.10) 138.00 (135.68, 140.50) -1.705 0.088
    LVEF/% 71.0 (68.0, 73.0) 71.0 (67.0, 73.0) -0.200 0.842
Type of surgery 2.754 0.097
    Internal fixation 690 (73.1) 323 (68.9)
    Arthroplasty 254 (26.9) 146 (31.1)
Type of anesthesia 1.621 0.203
    General anesthesia 211 (22.4) 91 (19.4)
    Regional anesthesia 733 (77.6) 378 (80.6)
Duration of anesthesia/min 122.0 (102.0, 147.0) 127.5 (109.0, 154.0) -2.841 0.004
Duration of surgery/min 63.0 (49.0, 80.0) 61.5 (49.0, 83.3) -0.794 0.427
Intraoperative blood loss/mL 50.0 (50.0, 150.0) 60.0 (50.0, 150.0) -0.980 0.327
Intraoperative fluids infusion/mL 1 100 (1 000, 1 300) 1 100 (1 000, 1 300) -0.479 0.632
Intraoperative blood transfusion 3.176 0.075
     < 400 mL 851 (90.1) 413 (85.9)
    ≥400 mL 93 (9.9) 68 (14.1)
Postoperative heart failure 54 (5.7) 18 (3.8) 2.296 0.130

Table 2

Univariate analysis of factors associating with postoperative heart failure of elderly patients with hip fracture in the development cohort"

Variables Non-PHF group (n=890) PHF group (n=54) Z/χ2 P
Age/years 81.0 (74.0, 85.0) 83.0 (80.0, 88.0) -3.739 < 0.001
Gender 0.431 0.512
    Female 639 (71.8) 41 (75.9)
    Male 251 (28.2) 13 (24.1)
BMI/(kg/m2) 1.065 0.587
     < 18.5 131 (14.7) 6 (11.1)
    18.5-28.0 674 (75.7) 41 (75.9)
    >28.0 85 (9.6) 7 (13.0)
Medical history
    Heart disease 91 (10.2) 27 (50.0) 73.641 < 0.001
    Diabetes mellitus 247 (27.8) 18 (33.3) 0.785 0.376
    Hypertension 494 (55.5) 38 (70.4) 4.547 0.032
    Cerebrovascular disease 157 (17.6) 11 (20.4) 0.259 0.611
    Pulmonary disease 87 (9.8) 13 (24.1) 10.990 0.001
Type of fracture 3.534 0.171
    Femoral neck fracture 387 (43.5) 22 (40.7)
    Femoral intertrochanteric fracture 423 (47.5) 23 (42.6)
    Femoral subtrochanteric fracture 80 (9.0) 9 (16.7)
Time from injury to surgery/d 4.00 (2.00, 7.00) 4.00 (3.00, 7.25) -1.283 0.200
ASA classification 37.416 < 0.001
    Ⅰ-Ⅱ 732 (82.2) 26 (48.1)
    Ⅲ-Ⅳ 158 (17.8) 28 (51.9)
Preoperative blood transfusion 1.857 0.173
     < 400 mL 840 (94.4) 48 (88.9)
    ≥400 mL 50 (5.6) 6 (11.1)
Preoperative SBP/mmHg 135.0 (125.0, 146.0) 135.0 (125.0, 151.0) -0.144 0.885
Preoperative DBP/mmHg 76.0 (68.0, 80.0) 72.0 (68.0, 80.5) -0.977 0.329
Preoperative heart rate/(beat/min) 76.0 (70.0, 80.0) 78.0 (69.8, 85.8) -0.979 0.327
Preoperative laboratory examinations
    WBC/(×109/L) 9.06 (7.28, 11.13) 9.75 (7.92, 12.93) -1.869 0.062
    HGB/(g/L) 121.00 (108.00, 132.00) 111.50 (98.75, 126.00) -3.074 0.002
    PLT/(×109/L) 194.00 (156.00, 240.00) 202.00 (170.00, 285.00) -1.869 0.062
    ALT/(U/L) 20.00 (16.00, 26.00) 18.00 (13.00, 23.00) -1.119 0.263
    Scr/(μmol/L) 64.00 (54.00, 78.00) 79.00 (58.00, 109.00) -4.281 < 0.001
    K/(μmol/L) 4.08 (3.80, 4.38) 4.21 (3.88, 4.52) -1.844 0.065
    Na/(μmol/L) 138.80 (136.10, 141.12) 137.40 (134.98, 140.58) -1.913 0.056
    LVEF/% 71.0 (68.0, 73.0) 69.0 (65.8, 72.3) -2.255 0.024
Type of surgery 5.574 0.028
    Internal fixation 658 (73.9) 32 (59.3)
    Arthroplasty 232 (26.1) 22 (40.7)
Type of anesthesia 7.117 0.008
    General anesthesia 191 (21.5) 20 (37.0)
    Regional anesthesia 699 (78.5) 34 (63.0)
Duration of anesthesia/min 121.5 (101.0, 145.3) 123.0 (103.8, 158.3) -1.520 0.128
Duration of surgery/min 63.0 (49.0, 80.0) 64.5 (49.0, 83.3) -0.325 0.745
Intraoperative blood loss/mL 50.0 (50.0, 150.0) 50.0 (50.0, 150.0) -0.302 0.763
Intraoperative fluids infusion/mL 1 100.0 (1 000.0, 1 300.0) 1 100.0 (1 000.0, 1 312.5) -0.122 0.903
Intraoperative blood transfusion 1.589 0.208
     < 400 mL 805 (90.4) 46 (85.2)
    ≥400 mL 46 (9.6) 8 (14.8)

Table 3

Multivariate Logistic regression analysis of factors associating with postoperative heart failure of elderly patients with hip fracture in the development cohort"

Variables β Wald χ2 OR (95%CI) P
Age 0.069 7.140 1.071 (1.019-1.127) 0.008
Hip arthroplasty 0.922 6.820 2.513 (1.259-5.019) 0.009
General anesthesia 0.705 4.477 2.024 (1.053-3.890) 0.034
History of heart disease 1.679 25.896 5.360 (2.808-10.234) < 0.001
Preoperative hemoglobin -0.021 4.190 0.979 (0.960-0.999) 0.041
Preoperative serum creatinine 0.007 5.907 1.007 (1.001-1.013) 0.015

Figure 2

The nomogram for the prediction of the PHF risk in elderly patients with hip fracture HGB, hemoglobin; Scr, serum creatinine; PHF, postoperative heart failure."

Figure 3

The area under the ROC curve of the nomogram after internal and external validation using the Bootstrap method (resampling=1 000) A, ROC curve after internal validation; B, ROC curve after external validation. ROC, receiver operating characteristic; AUC, area under the curve."

Figure 4

The area under the ROC curve of the nomogram and the predictors in the development cohort HGB, hemoglobin; Scr, serum creatinine; ROC, receiver operating characteristic; AUC, area under the curve."

Figure 5

The area under the ROC curve of the two nomograms in the development and validation cohort A, ROC curves in the development cohort; B, ROC curves in the validation cohort. ModA, the 4-variable nomogram (includes age, history of heart disease, preoperative hemoglobin level, and preoperative serum creatinine); ModB, the 6-variable nomogram (includes the 4 variables in ModA and the predictors of hip arthroplasty and general anesthesia). ROC, receiver operating characteristic; AUC, area under the curve."

Figure 6

Calibration plots of the nomogram after internal and external validation A, calibration plot after internal validation; B, calibration plot after external validation. The black dashed diagonal line indicates the perfect prediction of the ideal model. The blue solid line represents the performance of the nomogram. The red solid line represents the performance of the model after internal and external validation by the Bootstrap method (resampling=1 000). When the solid line is closer to the black dashed line, the prediction accuracy of the nomogram is better."

Figure 7

Decision curve analyses of the nomogram after internal and external validation A, decision curve analysis after internal validation; B, decision curve analysis after external validation. The Y-axis represents the net benefit, and the X-axis represents the threshold probability. The red line represents the nomogram, and the grey and black lines represent the assumption that all and no patients have postoperative heart failure respectively."

1 Roche JJ , Wenn RT , Sahota O , et al. Effect of comorbidities and postoperative complications on mortality after hip fracture in elderly people: Prospective observational cohort study[J]. BMJ, 2005, 331 (7529): 1374.
doi: 10.1136/bmj.38643.663843.55
2 Cullen MW , Gullerud RE , Larson DR , et al. Impact of heart failure on hip fracture outcomes: A population-based study[J]. J Hosp Med, 2011, 6 (9): 507- 512.
doi: 10.1002/jhm.918
3 Cordero J , Maldonado A , Iborra S . Surgical delay as a risk factor for wound infection after a hip fracture[J]. Injury, 2016, 47 (Suppl 3): S56- S60.
4 You F , Ma C , Sun F , et al. The risk factors of heart failure in elderly patients with hip fracture: What should we care?[J]. BMC Musculoskelet Disord, 2021, 22 (1): 832.
doi: 10.1186/s12891-021-04686-8
5 Tian M , Li W , Wang Y , et al. Risk factors for perioperative acute heart failure in older hip fracture patients and establishment of a nomogram predictive model[J]. J Orthop Surg Res, 2023, 18 (1): 347.
doi: 10.1186/s13018-023-03825-2
6 Brown CA , Boling J , Manson M , et al. Relation between prefracture characteristics and perioperative complications in the elderly adult patient with hip fracture[J]. South Med J, 2012, 105 (6): 306- 310.
doi: 10.1097/SMJ.0b013e3182574bfd
7 季日旭, 陈作喜, 吴银生, 等. 老年股骨颈骨折关节置换围术期发生心功能衰竭的危险因素分析[J]. 中华创伤杂志, 2018, 34 (11): 1030- 1034.
doi: 10.3760/cma.j.issn.1001-8050.2018.11.014
8 李长华, 王伟良, 林光锚, 等. 老年股骨转子间骨折患者围手术期发生心力衰竭的相关因素分析[J]. 中华创伤骨科杂志, 2018, 20 (5): 407- 411.
doi: 10.3760/cma.j.issn.1671-7600.2018.05.007
9 梅迎晨, 韩蕊, 陈游洲, 等. 老年髋部骨折围术期心力衰竭的临床特点及危险因素分析[J]. 中国医刊, 2021, 56 (2): 140- 144.
10 Gualandro DM , Puelacher C , Chew MS , et al. Acute heart failure after non-cardiac surgery: Incidence, phenotypes, determinants and outcomes[J]. Eur J Heart Fail, 2023, 25 (3): 347- 357.
doi: 10.1002/ejhf.2773
11 McDonagh TA , Metra M , Adamo M , et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure[J]. Eur Heart J, 2021, 42 (36): 3599- 3726.
doi: 10.1093/eurheartj/ehab368
12 Collins GS , Reitsma JB , Altman DG , et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement[J]. Ann Intern Med, 2015, 162 (1): 55- 63.
doi: 10.7326/M14-0697
13 Hao G , Wang X , Chen Z , et al. Prevalence of heart failure and left ventricular dysfunction in China: The China Hypertension Survey, 2012-2015[J]. Eur J Heart Fail, 2019, 21 (11): 1329- 1337.
doi: 10.1002/ejhf.1629
14 Jiang Y , Luo Y , Li J , et al. Chronic kidney disease and risk of postoperative cardiovascular events in elderly patients receiving hip fracture surgery[J]. Injury, 2022, 53 (2): 596- 602.
doi: 10.1016/j.injury.2021.12.032
15 Liu Y , Liu H , Zhang F . Development and internal validation of a nomogram for predicting postoperative cardiac events in elderly hip fracture patients[J]. Clin Interv Aging, 2023, 18, 2063- 2078.
doi: 10.2147/CIA.S435264
16 Ye CY , Liu A , Xu MY , et al. Arthroplasty versus internal fixation for displaced intracapsular femoral neck fracture in the elderly: Systematic review and meta-analysis of short- and long-term effectiveness[J]. Chin Med J (Engl), 2016, 129 (21): 2630- 2638.
doi: 10.4103/0366-6999.192788
17 Fisher MA , Matthei JD , Obirieze A , et al. Open reduction internal fixation versus hemiarthroplasty versus total hip arthroplasty in the elderly: A review of the National Surgical Quality Improvement Program database[J]. J Surg Res, 2013, 181 (2): 193- 198.
doi: 10.1016/j.jss.2012.07.004
18 Miller AG , Bercik MJ , Ong A . Nonagenarian hip fracture: Treatment and complications[J]. J Trauma Acute Care Surg, 2012, 72 (5): 1411- 1415.
doi: 10.1097/TA.0b013e318246f3f8
19 O'Hara DA , Duff A , Berlin JA , et al. The effect of anesthetic technique on postoperative outcomes in hip fracture repair[J]. Anesthesiology, 2000, 92 (4): 947- 957.
doi: 10.1097/00000542-200004000-00011
20 Chen X , Li H , Li S , et al. Comparison of risk of complication between neuraxial anaesthesia and general anaesthesia for hip fracture surgery: A systematic review and meta-analysis[J]. Int J Surg, 2023, 109 (3): 458- 468.
doi: 10.1097/JS9.0000000000000291
21 Weinstein ER , Boyer RB , White RS , et al. Improved outcomes for spinal versus general anesthesia for hip fracture surgery: A retrospective cohort study of the National Surgical Quality Improvement Program[J]. Reg Anesth Pain Med, 2024, 49 (1): 4- 9.
doi: 10.1136/rapm-2022-104217
22 Chowdary AR , Beale J , Martinez J , et al. Postoperative complications of spinal vs general anesthesia in elderly patients undergoing hip hemiarthroplasty[J]. Arch Orthop Trauma Surg, 2023, 143 (9): 5615- 5621.
doi: 10.1007/s00402-023-04876-0
[1] Zhicun LI, Tianyu WU, Lei LIANG, Yu FAN, Yisen MENG, Qian ZHANG. Risk factors analysis and nomogram model construction of postoperative pathological upgrade of prostate cancer patients with single core positive biopsy [J]. Journal of Peking University (Health Sciences), 2024, 56(5): 896-901.
[2] Zezhen ZHOU,Shaohui DENG,Ye YAN,Fan ZHANG,Yichang HAO,Liyuan GE,Hongxian ZHANG,Guoliang WANG,Shudong ZHANG. Predicting the 3-year tumor-specific survival in patients with T3a non-metastatic renal cell carcinoma [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 673-679.
[3] LIU Jie,GUO Chao. A prospective cohort study of the influence of positive/negative effectivity on the mortality risk of the Chinese elderly [J]. Journal of Peking University (Health Sciences), 2022, 54(2): 255-260.
[4] Ming-xin AO,Xue-min LI,Yuan-yuan YU,Hui-juan SHI,Hong-shi HUANG,Ying-fang AO,Wei WANG. Effects of visual restoration on dynamic plantar pressure features in elder individuals [J]. Journal of Peking University (Health Sciences), 2021, 53(5): 907-914.
[5] Wei ZHANG,Pei-xun ZHANG. Analysis of prophylactic effect of extended-duration anticoagulant drugs in elderly patients undergoing hip fracture [J]. Journal of Peking University(Health Sciences), 2019, 51(3): 501-504.
[6] Yi-ran ZHANG,Feng RAO,Wei PI,Pei-xun ZHANG,Bao-guo JIANG. Proximal femoral nails antirotation and dynamic hip screws for fixation of unstable intertrochanteric fractures of femur: A meta-analysis [J]. Journal of Peking University(Health Sciences), 2019, 51(3): 493-500.
[7] Jian CHEN,Cai-hong ZUO,Cai-yi ZHANG,Ming YANG,Pei-xun ZHANG. Comparison of the effects of two cephalomedullary nails (zimmer natural nail and proximal femoral nail antirotation) in treatment of elderly intertrochan teric fractures [J]. Journal of Peking University(Health Sciences), 2019, 51(2): 283-287.
[8] LIU Yu-qing, LU Jian, HAO Yi-chang, XIAO Chun-lei, MA Lu-lin. Predicting model based on risk factors for urosepsis after percutaneous nephrolithotomy [J]. Journal of Peking University(Health Sciences), 2018, 50(3): 507-513.
[9] WEI Bin, ZHANG Hua, XU Mao, LI Min, WANG Jun, ZHANG Li-ping, GUO Xiang-yang, ZHAO Yi-ming, ZHOU Fang. Effect of different anesthetic methods on postoperative outcomes in elderly patients undergoing hip fracture surgery [J]. Journal of Peking University(Health Sciences), 2017, 49(6): 1008-1013.
[10] LI Hao, ZHANG You-Yi.
Roles of proinflammatory cytokines in cardiac remodeling induced by sympathetic nervous system /catecholamine
[J]. Journal of Peking University(Health Sciences), 2014, 46(6): 1001-1004.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!