Journal of Peking University (Health Sciences) ›› 2021, Vol. 53 ›› Issue (1): 95-101. doi: 10.19723/j.issn.1671-167X.2021.01.015

Previous Articles     Next Articles

Radiography study on osteotome sinus floor elevation with placed implant simultaneously with no graft augmentation

LI Peng1,Δ(),PIAO Mu-zi1,HU Hong-cheng1,WANG Yong2,ZHAO Yi-jiao2,SHEN Xiao-jing2   

  1. 1. Second Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100101, China
    2. Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China
  • Received:2020-09-23 Online:2021-02-18 Published:2021-02-07
  • Contact: Peng LI E-mail:kqlipeng05420533@sina.com

RICH HTML

  

Abstract:

Objective: To investigate the change of endo-sinus bone height and bone volume in osteotome sinus floor elevation (OSFE) without bone graft but placing implants simultaneously by using cone beam computed tomography (CBCT) and three dimensional analysis, and to find the impacting factors on endo-sinus bone augmentation.Methods: OSFE was performed in 38 edentulous patients with missing teeth at posterior maxillary region, and 44 implants were placed and referred for OSFE using no graft materials. CBCT was performed pre-surgery and 9-68 months post-surgery when the patients encountered another implant surgery. The gained bone height at mesial, distal, buccal and palatal sites around the implant in sinus were measured, volumetric measurements of the endo-sinus gained bone volume (ESGBV) in the elevated region were calculated by Mimics software. Univariate analysis and multiple linear regression were performed to investigate the impacting factors on the gained bone height and ESGBV. Marginal bone loss was recorded according to the periapical radiography after implant restoration.Results: The mean residual bone height (RBH) pre-surgery was (3.41±1.23) mm, the mean protruded length (PL) into sinus of implant post-surgery was (3.41±1.28) mm, the mean endo-sinus gained bone height was (2.44±1.23) mm at distal sites, (2.88±1.20) mm at mesial sites, (2.83±1.22) mm at buccal sites and (2.96±1.16) mm at palatal sites, the mean endo-sinus gained bone height at distal sites was significantly lower than the other three sites (P<0.05). The average endo-sinus gained bone height was (2.78±1.13) mm. The mean ESGBV was (122.15± 73.27) mm3. Univariate analysis showed the more RBH, the less bone height gained in sinus, which existed at buccal, lingual, mesial and distal sites (P<0.001), and the more RBH, the smaller ESGBV gained (P=0.012). The ESGBV was significantly higher in the subjects whose bone generation period was more than 24 months than those whose bone generation period less than 24 months (P=0.034). The more PL, the more bone height and ESGBV gained (P=0.008). Multivariate analysis showed after adjusting factors of gender, age, smoking, width of sinus floor, thickness of sinus membrane pre-surgery, diameter and length of the implant, PL and bone generation period was positively correlated with mean endo-sinus gained bone height and ESGBV, while RBH negatively correlated with mean endo-sinus gained bone height. During the follow-up, the mean marginal bone loss was 0 (0-1.41) mm and all the implants loaded successfully.Conclusion: OSFE without bone graft but with placed implant simultaneously can increase endo-sinus gained bone height and ESGBV. RBH, PL and bone generation period are the significant factors impacting endo-sinus bone augmentation.

Key words: Sinus floor augmentation, Dental implants, X-ray computed tomography

CLC Number: 

  • R783

Figure 1

Periapical radiograph immediately after implant surgery (A) and after second stage surgery (B)"

Figure 2

Measurement the residual bone height (RBH) and width (W) of sinus floor before surgery"

Figure 3

Measurement of the distance from crest of bone to the apex of implant A A was the distance from the crest of bone to the apex of implant along the axis of implant."

Figure 4

Measurement of bone height at buccal (HB) and palatal (HP) site on coronal plane of CBCT(A) and measurement of bone height at mesial (HM) and distal (HD) site on sagittal plane of CBCT post-surgery (B)"

Figure 5

Volumetric measurement of new bone generation in sinus by Mimics software A, registration of sinus models pre-surgery and post-surgery on coronal plane; B, registration on axial plane; C, registration on sagittal plane, red line represent inner border of sinus presurgery, green line represent inner border of sinus post-surgery; D, the difference between two models was V1-V2 calculated by Boolean calculation; E, three dimensional model of new bone generation after reducing the implant volume by Boolean calculation."

Table 1

The effect of RBH, bone generation period and PL on BH, ABH and ESGBV"

Items BHM/mm BHD/mm BHB/mm BHP/mm ABH/mm ESGBV/mm3
RBH
≤3 mm (n=13) 4.06±0.85 3.62±0.74 4.09±1.06 4.04±1.03 3.95±0.78 162.55±62.28
3-5 mm (n=27) 2.66±0.59 2.17±0.74 2.56±0.51 2.77±0.55 2.54±0.50 88.10(10.47-234.06)*
≥5 mm (n=4) 0.25(-0.2-1.73)* 0.70(-1.75-2.24)* 0.35(0.2-1.54)* 0.52(0.17-1.83)* 0.45(-0.38-1.83)* 51.34(6.34-78.48)
P <0.001 <0.001 <0.001 <0.001 <0.001 0.012
T
≤24 months (n=29) 2.75(-0.2-4.35) 2.25±1.28 2.69±1.28 2.75(0.17-5.37) 2.61±1.13 103.82±63.41
>24 months (n=15) 3.23±1.25 2.81±1.07 3.11±1.06 3.25±1.15 3.10±1.09 157.61±80.01
P 0.316 0.185 0.316 0.298 0.23 0.034
PL
≤3 mm (n=15) 2.00(-0.2-2.72)* 1.45(-1.75-2.55)* 2.10(0.2-2.92)* 1.90±0.87 2.08(-0.38-2.54)* 77.37(6.34-214.14)*
3-6 mm (n=29) 3.37(2.32-6.31)* 3.02±0.89 3.35±1.03 3.38(2.42-5.89)* 3.15(2.28-5.68)* 142.87±72.32
P <0.001 <0.001 <0.001 <0.001 <0.001 0.008

Table 2

Multiple analysis of average bone height gained in sinus"

Variables B 95%CI P
PL 0.37 0.05-0.69 0.025
T 0.012 0.003-0.022 0.012
RBH -0.48 -0.81 to -0.15 0.005
Constant 2.91 0.76-5.06 0.009

Table 3

Multiple analysis of endo sinus gained bone volume"

Variables B 95%CI P
PL 30.20 16.30-44.10 0.001
T 1.86 0.36-3.37 0.016
Constant -21.83 -78.92-35.26 0.444
[1] Fok MR, Pelekos G, Tonetti MS. Feasibility and needs for simultaneous or staged bone augmentation to place prosthetically guided dental implants after extraction or exfoliation of first molars due to severe periodontitis[J]. J Clin Periodontol, 2020,47(10):1237-1247.
doi: 10.1111/jcpe.13344 pmid: 32652610
[2] 范震, 王方, 王佐林. 经牙槽嵴顶上颌窦底提升术: 中华口腔医学会第五届口腔种植专业委员会学术共识[J]. 口腔颌面外科杂志, 2018,28(1):1-9.
[3] Chen TW, Chang HS, Leung KW, et al. Implant placement immediately after the lateral approach of the trap door window procedure to create a maxillary sinus lift without bone grafting: a 2-year retrospective evaluation of 47 implants in 33 patients[J]. J Oral Maxillofac Surg, 2007,65(11):2324-2328.
doi: 10.1016/j.joms.2007.06.649 pmid: 17954333
[4] Pjetursson BE, Lang NP. Sinus floor elevation utilizing the transalveolar approach[J]. Periodontol 2000, 2014,66(1):59-71.
doi: 10.1111/prd.12043 pmid: 25123761
[5] Chen S, Buser D, Wismeijer D, 等. 宿玉成译.国际口腔种植学会(ITI)口腔种植临床指南. 第5卷,上颌窦底提升的临床程序[M]. 北京: 人民军医出版社, 2012: 53.
[6] Boyne PJ. Analysis of performance of root-form endosseous implants placed in the maxillary sinus[J]. J Long Term Eff Med Implants, 1993,3(2):143-159.
pmid: 10146541
[7] Starch-Jensen T, Schou S. Maxillary sinus membrane elevation with simultaneous installation of implants without the use of a graft material: a systematic review[J]. Implant Dent, 2017,26(4):621-633.
doi: 10.1097/ID.0000000000000617 pmid: 28639983
[8] Parra M, Atala-Acevedo C, Fariña R, et al. Graftless maxillary sinus lift using lateral window approach: a systematic review[J]. Implant Dent, 2018,27(1):111-118.
doi: 10.1097/ID.0000000000000695 pmid: 29210825
[9] Pinchasov G, Juodzbalys G. Graft-free sinus augmentation procedure: a literature review[J/OL]. J Oral Maxillofac Res, 2014,5(1): e1[2020-08-01]. http://www.ejomr.org/JOMR/archives/2014/1/e1/v5n1e1ht.pdf, 2014-03-08.
[10] Starch-Jensen T, Aludden H, Hallman M, et al. A systematic review and meta-analysis of long-term studies (five or more years) assessing maxillary sinus floor augmentation[J]. Int J Oral Maxillofac Surg, 2018,47(1):103-116.
[11] Markovic A, Mišic T, Calvo-Guirado JL, et al. Two-center prospective, randomized, clinical, and radiographic study comparing osteotome sinus floor elevation with or without bone graft and simultaneous implant placement[J]. Clin Implant Dent Relat Res, 2016,18(5):873-882.
doi: 10.1111/cid.12373 pmid: 26315564
[12] Scala A, Botticelli D, Faeda RS, et al. Lack of influence of the Schneiderian membrane in forming new bone apical to implants simultaneously installed with sinus floor elevation: an experimental study in monkeys[J]. Clin Oral Implants Res, 2012,23(2):175-181.
doi: 10.1111/j.1600-0501.2011.02227.x pmid: 21668505
[13] Srouji S, Kizhner T, Ben David D, et al. The Schneiderian membrane contains osteoprogenitor cells: in vivo and in vitro study[J]. Calcif Tissue Int, 2009,84(2):138-145.
doi: 10.1007/s00223-008-9202-x pmid: 19067018
[14] Palma VC, Magro-Filho O, de Oliveria JA, et al. Bone reformation and implant integration following maxillary sinus membrane elevation: an experimental study in primates[J]. Clin Implant Dent Relat Res, 2006,8(1):11-24.
doi: 10.2310/j.6480.2005.00026.x pmid: 16681489
[15] Duan DH, Fu JH, Qi W, et al. Graft-free maxillary sinus floor elevation: a systematic review and meta-analysis[J]. J Periodontol, 2017,88(6):550-564.
doi: 10.1902/jop.2017.160665 pmid: 28168901
[16] 唐德争, 马攀, 刘长营, 等. 低矮上颌窦底内提升同期种植术植骨与不植骨的临床观察[J]. 首都医科大学学报, 2018,39(1):98-102.
[17] Cricchio G, Sennerby L, Lundgren S. Sinus bone formation and implant survival after sinus membrane elevation and implant placement: a 1- to 6-year follow-up study[J]. Clin Oral Implants Res, 2011,22(10):1200-1212.
doi: 10.1111/j.1600-0501.2010.02096.x pmid: 21906186
[18] Suk-Arj P, Wongchuensoontorn C, Taebunpakul P. Evaluation of bone formation following the osteotome sinus floor elevation technique without grafting using cone beam computed tomography: a preliminary study[J]. Int J Implant Dent, 2019,5(1):27.
doi: 10.1186/s40729-019-0181-7 pmid: 31367919
[19] Balleri P, Veltri M, Nuti N, et al. Implant placement in combination with sinus membrane elevation without biomaterials: a 1-year study on 15 patients[J]. Clin Implant Dent Relat Res, 2012,14(5):682-689.
doi: 10.1111/j.1708-8208.2010.00318.x pmid: 21176096
[20] Sonoda T, Harada T, Yamamichi N, et al. Association between bone graft volume and maxillary sinus membrane elevation height[J]. Int J Oral Maxillofac Implants, 2017,32(4):735-740.
doi: 10.11607/jomi.5290 pmid: 28231348
[21] Frost HM. A 2003 update of bone physiology and Wolff’s Law for clinicians[J]. Angle Orthod, 2004,74(1):3-15.
doi: 10.1043/0003-3219(2004)074<0003:AUOBPA>2.0.CO;2 pmid: 15038485
[22] Nedir R, Nurdin N, Szmukler-Moncler S, et al. Placement of tapered implants using an osteotome sinus floor elevation technique without bone grafting: 1-year results[J]. Int J Oral Maxillofac Implants, 2009,24(4):727-733.
pmid: 19885415
[23] Nedir R, Nurdin N, Khoury P, et al. Short implants placed with or without grafting in atrophic sinuses: the 3-year results of a prospective randomized controlled study[J]. Clin Implant Dent Relat Res, 2016,18(1):10-18.
doi: 10.1111/cid.12279 pmid: 25622803
[24] Nedir R, Nurdin N, Abi Najm S, et al. Short implants placed with or without grafting into atrophic sinuses: the 5-year results of a prospective randomized controlled study[J]. Clin Oral Implants Res, 2017,28(7):877-886.
doi: 10.1111/clr.12893 pmid: 27296955
[25] Nedir R, Nurdin N, Vazquez L, et al. Osteotome sinus floor elevation without grafting: a 10-year prospective study[J]. Clin Implant Dent Relat Res, 2016,18(3):609-617.
doi: 10.1111/cid.12331 pmid: 25786548
[26] Temmerman A, Van Dessel J, Cortellini S, et al. Volumetric changes of grafted volumes and the Schneiderian membrane after transcrestal and lateral sinus floor elevation procedures: a clinical, pilot study[J]. J Clin Periodontol, 2017,44(6):660-671.
doi: 10.1111/jcpe.12728 pmid: 28382627
[27] Arasawa M, Oda Y, Kobayashi T, et al. Evaluation of bone volume changes after sinus floor augmentation with autogenous bone grafts[J]. Int J Oral Maxillofac Surg, 2012,41(7):853-857.
doi: 10.1016/j.ijom.2012.01.020 pmid: 22551647
[28] Klein GG, Curvello VP, Dutra RA, et al. Bone volume changes after sinus floor augmentation with heterogenous graft[J]. Int J Oral Maxillofac Implants, 2016,31(3):665-671.
doi: 10.11607/jomi.3948 pmid: 27183076
[29] Alayan J, Ivanovski S. A prospective controlled trial comparing xenograft/autogenous bone and collagen-stabilized xenograft for maxillary sinus augmentation-complications, patient-reported outcomes and volumetric analysis[J]. Clin Oral Implants Res, 2018,29(2):248-262.
pmid: 29231263
[30] Xavier SP, Silva ER, Kahn A, et al. Maxillary sinus grafting with autograft versus fresh-frozen allograft: a split-mouth evaluation of bone volume dynamics[J]. Int J Oral Maxillofac Implants, 2015,30(5):1137-1142.
doi: 10.11607/jomi.3924 pmid: 26394351
[31] Sbordone C, Toti P, Guidetti F, et al. Volume changes of autogenous bone after sinus lifting and grafting procedures: a 6-year computerized tomographic follow-up[J]. J Craniomaxillofac Surg, 2013,41(3):235-241.
doi: 10.1016/j.jcms.2012.09.007 pmid: 23084768
[32] Lin IC, Gonzalez AM, Chang HJ, et al. A 5-year follow-up of 80 implants in 44 patients placed immediately after the lateral trap-door window procedure to accomplish maxillary sinus elevation without bone grafting[J]. Int J Oral Maxillofac Implants, 2011,26(5):1079-1086.
pmid: 22010092
[33] Kühl S, Payer M, Kirmeier R, et al. The influence of particulated autogenous bone on the early volume stability of maxillary sinus grafts with biphasic calcium phosphate: a randomized clinical trial[J]. Clin Implant Dent Relat Res, 2015,17(1):173-178.
doi: 10.1111/cid.12086 pmid: 23714235
[1] Congwei WANG,Min GAO,Yao YU,Wenbo ZHANG,Xin PENG. Clinical analysis of denture rehabilitation after mandibular fibula free-flap reconstruction [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 66-73.
[2] Qian DING,Wen-jin LI,Feng-bo SUN,Jing-hua GU,Yuan-hua LIN,Lei ZHANG. Effects of surface treatment on the phase and fracture strength of yttria- and magnesia-stabilized zirconia implants [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 721-728.
[3] Fei SUN,Jian LIU,Si-qi LI,Yi-ping WEI,Wen-jie HU,Cui WANG. Profiles and differences of submucosal microbial in peri-implantitis and health implants: A cross-sectional study [J]. Journal of Peking University (Health Sciences), 2023, 55(1): 30-37.
[4] WANG Shu-lei,GAO Yang-xu,ZHANG Hong-wu,YANG Hai-bo,LI Hui,LI Yu,SHEN Li-xue,YAO Hong-xin. Clinical analysis of 30 cases of basal ganglia germinoma in children [J]. Journal of Peking University (Health Sciences), 2022, 54(2): 222-226.
[5] LI Yi,YU Hua-jie,QIU Li-xin. Clinical classification and treatment decision of implant fracture [J]. Journal of Peking University (Health Sciences), 2022, 54(1): 126-133.
[6] Zhong ZHANG,Huan-xin MENG,Jie HAN,Li ZHANG,Dong SHI. Effect of vertical soft tissue thickness on clinical manifestation of peri-implant tissue in patients with periodontitis [J]. Journal of Peking University (Health Sciences), 2020, 52(2): 332-338.
[7] Chun-ping LIN,Song-he LU,Jun-xin ZHU,Hong-cheng HU,Zhao-guo YUE,Zhi-hui TANG. Influence of thread shapes of custom-made root-analogue implants on stress distribution of peri-implant bone: A three-dimensional finite element analysis [J]. Journal of Peking University(Health Sciences), 2019, 51(6): 1130-1137.
[8] Qian WANG,Dan LI,Zhi-hui TANG. Sinus floor elevation and simultaneous dental implantation: A long term retrospective study of sinus bone gain [J]. Journal of Peking University(Health Sciences), 2019, 51(5): 925-930.
[9] Xiao-qian LIU,Qiu-wen CHEN,Hai-lan FENG,Bing WANG,Jian QU,Zhen SUN,Mo-di HENG,Shao-xia PAN. Oral hygiene maintenance of locator attachments implant overdentures in edentulous population: A longitudinal study [J]. Journal of Peking University(Health Sciences), 2019, 51(1): 136-144.
[10] Zhi-yong△ ZHANG,Tian MENG,Quan CHEN,Wen-shu LIU,Yu-huan CHEN. Retrospective analysis of early dental implant failure [J]. Journal of Peking University(Health Sciences), 2018, 50(6): 1088-1091.
[11] LIU Jing-yin, CHEN Fei, GE Yan-jun, WEI Ling, PAN Shao-xia, FENG Hai-lan. Influence of implants prepared by selective laser melting on early bone healing [J]. Journal of Peking University(Health Sciences), 2018, 50(1): 117-122.
[12] LIANG Nai-wen, SHI Lei,HUANG Ying,DENG Xu-liang. Role of different scale structures of titanium implant in the biological behaviors of human umbilical vein endothelial cells [J]. Journal of Peking University(Health Sciences), 2017, 49(1): 43-048.
[13] LI Bei-bei, LIN Ye, CUI Hong-yan, HAO Qiang, XU Jia-bin, DI Ping. Clinical evaluation of “All-on-Four” provisional prostheses reinforced with  carbon fibers [J]. Journal of Peking University(Health Sciences), 2016, 48(1): 133-137.
[14] CUI Hong-Yan, DI Ping, LI Jian-Hui, LIN Ye, LIU Rong-Rong. Application of spark erosion technology in manufacture of implant prosthesis [J]. Journal of Peking University(Health Sciences), 2015, 47(2): 336-339.
[15] HAN Jie, CHEN Zhi-Bin, LI Wei, MENG Huan-Xin. Determination of bone metabolic marker levels in perio-implant crevicular fluid and analysis of dental implants stability by resonance frequency in the early stage of healing [J]. Journal of Peking University(Health Sciences), 2015, 47(1): 37-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!