Journal of Peking University(Health Sciences) ›› 2015, Vol. 47 ›› Issue (6): 1015-1021. doi: 10.3969/j.issn.1671-167X.2015.06.023

• Article • Previous Articles     Next Articles

Finite element analysis of the maxillary central incisor with crown lengthening surgery and post-core restoration in management of crown-root fracture

ZHEN Min1, HU Wen-jie1△, RONG Qi-guo2△   

  1. (1. Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China; 2.Department of Mechanics and Engineering Scince, College of Engineering, Peking University, Beijing 100871, China)
  • Online:2015-12-18 Published:2015-12-18
  • Contact: HU Wen-jie1, RONG Qi-guo E-mail:huwenjie@pkuss.bjmu.edu.cn, qrong@pku.edu.cn
  • Supported by:

    Supported by the Capital Foundation for Clinical Characteristics and Application Research(Z131107002213174)

Abstract:

Objective: To construct the finite element models of maxillary central incisor and the simulations with crown lengthening surgery and post-core restoration in management of different crown-root fracture types, to investigate the stress intensity and distributions of these models mentioned above, and to analyze the indications of crown lengthening from the point of view of mechanics. Methods: An extracted maxillary central incisor and alveolar bone plaster model were scanned by Micro-CT and dental impression scanner (3shape D700) respectively. Then the 3D finite element models of the maxillary central incisor and 9 simulations with crown lengthening surgery and postcore restoration were constructed by Mimics 10.0, Geomagic studio 9.0 and ANSYS 14.0 software. The oblique static force (100 N) was applied to the palatal surface (the junctional area of the incisal 1/3 and middle 1/3), at 45 degrees to the longitudinal axis, then the von Mises stress of dentin, periodontal ligament, alveolar bone, post and core, as well as the periodontal ligament area, were calculated. Results: A total of 10 high-precision three-dimensional finite element models of maxillary central incisor were established. The von Mises stress of models: post>dentin>alveolar bone>core>periodontal ligament, and the von Mises stress increased linearly with the augmentation of fracture degree (besides the core). The periodontal ligament area of the crown lengthening was reduced by 12% to 33%. The von Mises stress of periodontal ligament of the B2L2c, B2L3c, B3L1c, B3L2c, B3L3c models exceeded their threshold limit value, respectively. Conclusion: The maxillary central incisors with the labial fracture greater than three-quarter crown length and the palatal fracture deeper than 1 mm below the alveolar crest are not the ideal indications of the crown lengthening surgery.

Key words: Tooth fractures, Crown lengthening, Finite element analysis, Tooth crown, Tooth root

CLC Number: 

  • R781.45
[1] Yun-fei DAI,He LIU,Chu-fang PENG,Xi-jun JIANG. Retrospective evaluation of treatment outcomes in immature teeth treated with regenerative endodontic procedures with an over-36-month review [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 729-735.
[2] Meng-en OU,Yun DING,Wei-feng TANG,Yong-sheng ZHOU. Three-dimensional finite element analysis of cement flow in abutment margin-crown platform switching [J]. Journal of Peking University (Health Sciences), 2023, 55(3): 548-552.
[3] Min ZHEN,Huan-xin MENG,Wen-jie HU,Deng-cheng WU,Yi-ping WEI. Healing of the dento-gingival junction following modified crown lengthening procedure in beagle dogs [J]. Journal of Peking University (Health Sciences), 2022, 54(5): 927-935.
[4] Juan GAO,Hang-miao LV,Hui-min MA,Yi-jiao ZHAO,Xiao-tong LI. Evaluation of root resorption after surgical orthodontic treatment of skeletal Class Ⅲ malocclusion by three-dimensional volumetric measurement with cone-beam CT [J]. Journal of Peking University (Health Sciences), 2022, 54(4): 719-726.
[5] FENG Sha-wei,GUO Hui,WANG Yong,ZHAO Yi-jiao,LIU He. Initial establishment of digital reference standardized crown models of the primary teeth [J]. Journal of Peking University (Health Sciences), 2022, 54(2): 327-334.
[6] Shuang REN,Hui-juan SHI,Jia-hao ZHANG,Zhen-long LIU,Jia-yi SHAO,Jing-xian ZHU,Xiao-qing HU,Hong-shi HUANG,Ying-fang AO. Finite element analysis of the graft stresses after anterior cruciate ligament reconstruction [J]. Journal of Peking University (Health Sciences), 2021, 53(5): 865-870.
[7] Wei ZHOU,Jin-gang AN,Qi-guo RONG,Yi ZHANG. Three-dimensional finite element analysis of traumatic mechanism of mandibular symphyseal fracture combined with bilateral intracapsular condylar fractures [J]. Journal of Peking University (Health Sciences), 2021, 53(5): 983-989.
[8] JIANG You-sheng,FENG Lin,GAO Xue-jun. Influence of base materials on stress distribution in endodontically treated maxillary premolars restored with endocrowns [J]. Journal of Peking University (Health Sciences), 2021, 53(4): 764-769.
[9] Wei-liang WU,Xiao ZENG,Xiao-qiang LIU,Jian-guo TAN. Esthetic proportions of maxillary anterior teeth of 120 Chinese adults [J]. Journal of Peking University (Health Sciences), 2020, 52(6): 1130-1134.
[10] Xiao-xian CHEN,Jie ZHONG,Wen-juan YAN,Hong-mei ZHANG,Xia JIANG,Qian HUANG,Shi-hua XUE,Xing-gang LIU. Clinical performance of rensin-bonded composite strip crowns in primary incisors [J]. Journal of Peking University (Health Sciences), 2020, 52(5): 907-912.
[11] Chun-ping LIN,Song-he LU,Jun-xin ZHU,Hong-cheng HU,Zhao-guo YUE,Zhi-hui TANG. Influence of thread shapes of custom-made root-analogue implants on stress distribution of peri-implant bone: A three-dimensional finite element analysis [J]. Journal of Peking University(Health Sciences), 2019, 51(6): 1130-1137.
[12] Jia-hao ZHANG,Shuang REN,Jia-yi SHAO,Xing-yue NIU,Xiao-qing HU,Ying-fang AO. Anatomical and finite element analysis of anterior cruciate ligament reconstruction within biomechanical insertion [J]. Journal of Peking University(Health Sciences), 2019, 51(3): 586-590.
[13] Hong-yu FU,Fang-fang WANG,Xiao-mei HOU. Construction and mechanical analysis of finite element model for bending property of controlled memory wire nickel-titanium rotary file [J]. Journal of Peking University(Health Sciences), 2019, 51(1): 131-135.
[14] . Stress change of periodontal ligament of the anterior teeth at the stage of space closure in lingual appliances: a 3-dimensional finite element analysis [J]. Journal of Peking University(Health Sciences), 2018, 50(1): 141-147.
[15] ZHAO Yi-jiao, LIU Yi, SUN Yu-chun, WANG Yong. Three-dimensional data fusion method for tooth crown and root based on curvature continuity algorithm#br# [J]. Journal of Peking University(Health Sciences), 2017, 49(4): 719-723.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!