Journal of Peking University(Health Sciences) ›› 2018, Vol. 50 ›› Issue (2): 221-225. doi: 10.3969/j.issn.1671-167X.2018.02.004

• Article • Previous Articles     Next Articles

Application of anoptomagnetic probe Gd-DO3A-EA-FITC in imaging and analyzing the brain interstitial space

LI Yun-qian1,2,3, SHENG Hui1,2,3, LIANG Lei1, ZHAO Yue2,3, LI Huai-ye2,3, BAI Ning2,3,4, WAN Tong1,2,3, YUAN Lan1,2△, HAN Hong-bin3,5△   

  1. (1. Department of Chemical Biology, Peking University School of Pharmaceutical Sciences, Beijng 100191, China; 2. Peking University Medical and Health Analysis Center, Beijng 100191, China; 3. Beijing Key Lab of Magnetic Resonance Imaging Device and Technique, Beijing 100191, China; 4. Jinzhou Medical University of Pharmaceutical Sciences, Jinzhou 121000, Liaoning, China; 5. Department of Radiology, Peking University Third Hospital, Beijing 100191, China)
  • Online:2018-04-18 Published:2018-04-18
  • Contact: YUAN Lan, HAN Hong-bin E-mail:yuan_lan@bjmu.edu.cn, hanhongbin@bjmu.edu.cn
  • Supported by:
     Supported by the National Key Research and Development Plan (2016YFC0103605, 2016YFC0103602, 2016YFC0103600), the National Natural Science Foundation of China (91330103, 91630314, 81471633), the National Science Fund for Distinguished Young Scholars (61625102), the Beijing Municipal Science and Technology (Z161100000116041), and the Peking University Seed Fund for Medicine-Engineering Interdisciplinary Research Project (BMU20120290)

Abstract: Objective: To investigate the application of the optical magnetic bimodal molecular probe Gd-DO3A-ethylthiouret-fluorescein isothiocyanate (Gd-DO3A-EAFITC) in brain tissue imaging and brain interstitial space (ISS). Methods: In the study, 24 male SD rats were randomly divided into 3 groups, including magnetic probe group (n=6), optical probe group (n=6) and optical magnetic bimodal probe group (n=12), then the optical magnetic bimodal probe group was divided equally into magnetic probe subgroup (n=6) and optical probe subgroup (n=6). Referencing the brain stereotaxic atlas, the coronal globus pallidus as center level, the probes including gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA), fluorescein isothiocyanate (FITC) and Gd-DO3A-EA-FITC of 2 μL (10 mmol/L) were injected into the caudate nucleus respectively, magnetic resonance imaging (MRI) was performed in the magnetic probe group and magnetic probe subgroup to image the dynamic diffusion and distribution of the probes in the brain ISS, a self-developed brain ISS image processing system was used to measure the diffusion coefficient, clearance, volume fraction and half-time in these two groups. Laser scanning confocal microscope (LSCM) was performed in vitro in the optical probe group and optical probe subgroup for fluorescence imaging at the time points 2 hours after the injection of the probe, and the distribution in the oblique sagittal slice was compared with the result of the first two groups. Results: For the magnetic probe group and magnetic probe subgroup, there were the same imaging results between the probes of Gd-DTPA and Gd-DO3A-EA-FITC. The diffusion parameters of Gd-DTPA and GdDO3A-EA-FITC were as follows: the average diffusion coefficients [(3.31±0.11)×10-4 mm2/s vs. (3.37±0.15)×10-4 mm2/s, t=0.942, P=0.360], the clearance [(3.04±0.37) mmol/L vs. (2.90±0.51) mmol/L, t=0.640, P=0.531], the volume fractions (17.18%±0.14% vs. 17.31%±0.15%, t=1.961, P=0.068), the half-time [(86.58±3.31) min vs. (84.61±2.38) min, t=1.412, P=0.177], the diffusion areas [(23.25±0.68) mm2 vs. (22.71±1.00) mm2, t=1.100, P=0.297]. The statistical analysis of each brain was made by t test, and the diffusion parameters were not statistically significant. Moreover, for the optical probe group and optical probe subgroup, the diffusion area of Gd-DO3A-EA-FITC [(22.61±1.16) mm2] was slightly larger than that of FITC [(22.10±1.29) mm2], the statistical analysis of each brain was made by t test, and the diffusion parameters were not statistically significant (t=0.713, P=0.492). Conclusion: Gd-DO3AEA-FITC shows the same imaging results as the traditional GD-DTPA, and it can be used in measuring brain ISS.

Key words: Brain, Contrast media, Molecular probe techniques, Interstitial space, Microscopy, confocal, Magnetic resonance imaging

CLC Number: 

  • R445.2
[1] Yuxuan TIAN,Mingjian RUAN,Yi LIU,Derun LI,Jingyun WU,Qi SHEN,Yu FAN,Jie JIN. Predictive effect of the dual-parametric MRI modified maximum diameter of the lesions with PI-RADS 4 and 5 on the clinically significant prostate cancer [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 567-574.
[2] Jinna LI,Li' na XU,Min LI,Yi SONG,Jing ZHANG,Longbin JIA. Correlations between serum BDNF, IL-18 and hs-CRP levels in patients with acute cerebral infarction and vascular cognitive impairment [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 708-714.
[3] Ren LONG,Xin MAO,Tianzi GAO,Qian XIE,Hanbo TAN,Ziyin LI,Hongbin HAN,Lan YUAN. Ursolic acid improved demyelination and interstitial fluid drainage disorders in schizophrenia mice [J]. Journal of Peking University (Health Sciences), 2024, 56(3): 487-494.
[4] Yi LIU,Chang-wei YUAN,Jing-yun WU,Qi SHEN,Jiang-xi XIAO,Zheng ZHAO,Xiao-ying WANG,Xue-song LI,Zhi-song HE,Li-qun ZHOU. Diagnostic efficacy of prostate cancer using targeted biopsy with 6-core systematic biopsy for patients with PI-RADS 5 [J]. Journal of Peking University (Health Sciences), 2023, 55(5): 812-817.
[5] Chang-wei YUAN,De-run LI,Zhi-hua LI,Yi LIU,Gang-zhi SHAN,Xue-song LI,Li-qun ZHOU. Application of dynamic contrast enhanced status in multiparametric magnetic resonance imaging for prostatic cancer with PI-RADS 4 lesion [J]. Journal of Peking University (Health Sciences), 2023, 55(5): 838-842.
[6] Ying LIU,Ran HUO,Hui-min XU,Zheng WANG,Tao WANG,Hui-shu YUAN. Correlations between plaque characteristics and cerebral blood flow in patients with moderate to severe carotid stenosis using magnetic resonance vessel wall imaging [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 646-651.
[7] Qiang FU,Guan-ying GAO,Yan XU,Zhuo-hua LIN,You-jing SUN,Li-gang CUI. Comparative study of ultrasound and magnetic resonance imaging in the diagnosis of asymptomatic anterosuperior acetabular labrum tears [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 665-669.
[8] Shan YE,Ping-ping JIN,Nan ZHANG,Hai-bo WU,Lin SHI,Qiang ZHAO,Kun YANG,Hui-shu YUAN,Dong-sheng FAN. Cortical thickness and cognitive impairment in patients with amyotrophic lateral sclerosis [J]. Journal of Peking University (Health Sciences), 2022, 54(6): 1158-1162.
[9] Ying CAI,Qiao-qin WAN,Xian-jie CAI,Ya-juan GAO,Hong-bin HAN. Epidural photobiomodulation accelerates the drainage of brain interstitial fluid and its mechanism [J]. Journal of Peking University (Health Sciences), 2022, 54(5): 1000-1005.
[10] WANG Shu-lei,GAO Yang-xu,ZHANG Hong-wu,YANG Hai-bo,LI Hui,LI Yu,SHEN Li-xue,YAO Hong-xin. Clinical analysis of 30 cases of basal ganglia germinoma in children [J]. Journal of Peking University (Health Sciences), 2022, 54(2): 222-226.
[11] ZHANG Fan,CHEN Qu,HAO Yi-chang,YAN Ye,LIU Cheng,HUANG Yi,MA Lu-lin. Relationship between recovery of urinary continence after laparoscopic radical prostatectomy and preoperative/postoperative membranous urethral length [J]. Journal of Peking University (Health Sciences), 2022, 54(2): 299-303.
[12] Yi-fan WU,Xiao-yuan ZHANG,Shuang REN,Ying-xiang YU,Cui-qing CHANG. Measurement and evaluation of the quadriceps muscle mass in young men based on magnetic resonance imaging [J]. Journal of Peking University (Health Sciences), 2021, 53(5): 843-849.
[13] Hui SHENG,Lei LIANG,Tong-liang ZHOU,Yan-xing JIA,Tong WANG,Lan YUAN,Hong-bin HAN. Improved synthesis process of optical-magnetic bimodal probe of Gd-[4,7-Bis-carboxymethyl-10-(2-fluoresceinthioureaethyl)-1,4,7,10-tetraaza-cyclododec-1-yl]-acetic acid complexes [J]. Journal of Peking University (Health Sciences), 2020, 52(5): 959-963.
[14] Shi-ming ZHAO,Tie-jun YANG,Chun-miao XU,Xiao-feng GUO,Yong-kang MA,Xue-jun CHEN,Xiang LI,Chao-hong HE. Bladder cancer local staging about muscle invasion: 3.0T MRI performance following transurethral resection [J]. Journal of Peking University (Health Sciences), 2020, 52(4): 701-704.
[15] Yu SONG,Hong-bin HAN,Jun YANG,Ai-bo WANG,Qing-yuan HE,Yuan-yuan LI,Guo-mei ZHAO,Ya-juan GAO,Rui WANG,Yi-xing HAN,Ai-lian LIU,Qing-wei SONG. Effect of convection enhanced delivery on the microstructure of brain extracellular space in aged rats [J]. Journal of Peking University (Health Sciences), 2020, 52(2): 362-367.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!