Journal of Peking University (Health Sciences) ›› 2022, Vol. 54 ›› Issue (6): 1158-1162. doi: 10.19723/j.issn.1671-167X.2022.06.016

Previous Articles     Next Articles

Cortical thickness and cognitive impairment in patients with amyotrophic lateral sclerosis

Shan YE1,2,Ping-ping JIN1,2,Nan ZHANG1,2,Hai-bo WU3,Lin SHI4,5,Qiang ZHAO3,Kun YANG3,Hui-shu YUAN3,Dong-sheng FAN1,2,*()   

  1. 1. Department of Neurology, Peking University Third Hospital, Beijing 100191, China
    2. Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing 100191, China
    3. Department of Radiology, Peking University Third Hospital, Beijing 100191, China
    4. Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region 000852, China
    5. BrainNow Research Institute, Shenzhen 518000, Guangdong, China
  • Received:2020-03-21 Online:2022-12-18 Published:2022-12-19
  • Contact: Dong-sheng FAN E-mail:dsfan2010@aliyun.com
  • Supported by:
    the National Natural Science Foundation of China(82001350);the Peking University Third Hospital Key Clinical Projects(BYSY2018048);the Peking University Third Hospital Cohort Construction Project(BYSYDL2019002)

RICH HTML

  

Abstract:

Objective: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with high morbidity and mortality. There are about 5%-15% of ALS patients combining with frontotemporal lobe degeneration (FTLD) at the same time and 50% of patients combing with cognitive function changes. The analysis of cortical thickness based on MRI is an important imaging method to evaluate brain structure. The aim of the study was to explore the changes of brain structure in ALS patients by cortical thickness analysis, and to explore the correlation between the brain structure and cognitive function. Methods: In the study, 18 ALS patients treated in Department of Neurology, Peking University Third Hospital and 18 normal controls (age, gender and education level matched) were included. 3D magnetization prepared rapid gradient echo imaging (MPRAGE) sequence MRI was performed and the cortical thickness was analyzed. At the same time, all the ALS patients took neuropsychology assessments, including: mini-mental state examination (MMSE), verbal fluency test (VFT), Stroop color word test (SCWT), prospective memory (PM), emotional picture perception and recognition, and faux pas story test. Results: After cognitive assessment, two ALS patients had cognitive impairment. One was in accordance with ALS-frontotemporal dementia (FTD) diagnosis and the other one was in accordance with ALS cognitive impairment (ALSci) diagnosis. In all the 18 ALS patients and 18 normal controls, the cortical thickness of the left medial orbitofrontal lobe and the medial temporal lobe were significantly reduced (P < 0.05) in ALS group by the vertex-wise comparison. Cortical thickness of the left entorhinal cortex, the left inferior temporal gyrus, the left medial orbitofrontal lobe and the left insular lobe was significantly reduced (P < 0.05) by the region-wise comparison. However, when only concluded the 16 ALS non-cognitive impairment patients, there was no significant difference between the two groups (P>0.05). There were correlations between the scores of prospective memory, emotional picture perception and recognition, faux pas story test and the cortical thickness of their corresponding regions (P < 0.05). Conclusion: The cortical thickness of ALS patients are correlated with neuropsychological scores which may reflect the changes of cortical structure corresponding to the cognitive assessment, and may provide help for the early diagnosis of cognitive changes in ALS patients.

Key words: Amyotrophic lateral sclerosis, Magnetic resonance imaging, Cerebral cortex, Cognition

CLC Number: 

  • R744.8

Table 1

Demographic and clinical characteristic of ALS and normal control group"

Items Normal control group ALS group
Male, n (%) 7/18 (38.9) 7/18 (38.9)
Age/years, ${\bar x}$±s 53.7±12.1 52.9±11.8
Education/years, ${\bar x}$±s 11.8±4.8 11.4±4.7
Duration/months, ${\bar x}$±s 13.5±9.3
Region of onset, n (%)
   Bulbar 3/18 (16.7)
   Extremities 15/18 (83.3)
Upper motor neuron, n (%)
   One 0
   Two 3/18 (12.5)
   Three 15/18 (87.5)
Diagnostic level, n (%)
   Definite 3/18 (16.7)
   Probable 8/18 (44.4)
   Lab-supported probable 6/18 (33.3)
   Possible 1/18 (5.5)
ALS-FRS score, ${\bar x}$±s 35.8±7.5
Progression rate, ${\bar x}$±s 1.11±0.83

Figure 1

Vertex-wise comparison of cortical thickness between 18 ALS patients and 18 normal controls"

Table 2

Region-wise comparison of cortical thickness between 18 ALS patients and 18 normal controls"

Region ALS patients/mm Normal control/mm P value
Left entorhinal cortex 2.91±0.41 3.14±0.18 0.044
Left inferior temporal gyrus 2.66±0.18 2.77±0.11 0.046
Left medial orbitofrontal lobe 2.08±0.12 2.18±0.12 0.015
Left insula lobe 2.68±0.17 2.78±0.09 0.042

Table 3

Correlation between cortical thickness and EBPM"

Region Related coefficient P value
Left lateral orbitofrontal lobe 0.523 0.038
Left media orbitofrontal lobe 0.600 0.014
Left pars orbitalis 0.644 0.007
Left pars triangularis 0.526 0.036
Left superior frontal gyrus 0.523 0.034
Right lateral orbitofrontal lobe 0.667 0.005
Right pars orbitalis 0.702 0.002
Right tegmental part of inferior frontal gyrus 0.631 0.009
Right pars triangularis 0.697 0.003
Right middle frontal gyrus 0.669 0.005
Right superior temporal gyrus 0.635 0.008

Table 4

Correlation between cortical thickness and faux pas story test"

Region Related coefficient P value
Left media orbitofrontal lobe 0.614 0.015
Right hippocampal gyrus 0.533 0.041
Right entorhinal cortex 0.599 0.018

Table 5

Correlation between cortical thickness and emotional picture perception and recognition"

Neuropsychologic test Related coefficient P value
Negative picture arousal
   Left lateral orbitofrontal lobe 0.627 0.007
   Left inferior temporal gyrus 0.510 0.036
Positive picture recognition rate
   Left entorhinal cortex 0.639 0.006
   Left fusiform gyrus 0.576 0.015
   Left hippocampal gyrus 0.703 0.002
Negative picture recognition rate
   Left fusiform gyrus 0.507 0.038
1 Strong M , Abrahams S , Goldstein L , et al. Amyotrophic lateral sclerosis-frontotemporal spectrum disorder (ALS-FTSD): Revised diagnostic criteria[J]. Amyotroph Lateral Scler Frontotemporal Degener, 2017, 18 (3/4): 153- 174.
2 Hanstock C , Sun K , Choi C , et al. Spectroscopic markers of neurodegeneration in the mesial prefrontal cortex predict survival in ALS[J]. Amyotroph Lateral Scler Frontotemporal Degener, 2020, 21 (3/4): 246- 251.
3 Trojsi F , Nardo F , Siciliano M , et al. Frontotemporal degeneration in amyotrophic lateral sclerosis (ALS): A longitudinal MRI one-year study[J]. CNS Spectr, 2021, 26 (3): 258- 267.
doi: 10.1017/S109285292000005X
4 Hu T , Hou Y , Wei Q , et al. Patterns of brain regional functional coherence in cognitive impaired ALS[J]. Int J Neurosci, 2020, 130 (8): 751- 758.
doi: 10.1080/00207454.2019.1705806
5 Brooks BR , Miller RG , Swash M , et al. El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis[J]. Amyotroph Lateral Scler Other Motor Neuron Disord, 2000, 1 (5): 293- 299.
doi: 10.1080/146608200300079536
6 Desikan RS , Segonne F , Fischl B , et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest[J]. Neuroimage, 2006, 31 (3): 968- 980.
doi: 10.1016/j.neuroimage.2006.01.021
7 Chiara C , Alessandra D , Stefano FC , et al. Multimodal MRI quantification of the common neurostructural bases within the FTD-ALS continuum[J]. Neurobiol Aging, 2018, 62, 95- 104.
doi: 10.1016/j.neurobiolaging.2017.09.019
8 Verstraete E , Veldink JH , Hendrikse J , et al. Structural MRI reveals cortical thinning in amyotrophic lateral sclerosis[J]. J Neurol Neurosurg Psychiatry, 2011, 83 (4): 383- 388.
9 Bergmann M . Motor neuron disease/amyotrophic lateral sclerosis: Lessons from ubiquitin[J]. Pathol Res Pract, 1993, 189 (8): 902- 912.
doi: 10.1016/S0344-0338(11)81102-7
10 Shen D , Hou B , Cui B , et al. Comparing brain structural and perfusion MRI changes across ALS-FTD continuum[J]. Clin Neurophysiol, 2018, 129, e162.
11 Labar KS , Cabeza R . Cognitive neuroscience of emotional memory[J]. Nat Rev Neurosci, 2006, 7 (1): 54- 64.
doi: 10.1038/nrn1825
12 Dolcos F , Labar KS , Cabeza R . Dissociable effects of arousal and valence on prefrontal activity indexing emotional evaluation and subsequent memory: An event-related fMRI study[J]. Neuro-image, 2004, 23 (1): 64- 74.
13 Lule D , Diekmann V , Anders S , et al. Brain responses to emotional stimuli in patients with amyotrophic lateral sclerosis (ALS)[J]. J Neurol, 2007, 254 (4): 519- 527.
doi: 10.1007/s00415-006-0409-3
[1] Yuxuan TIAN,Mingjian RUAN,Yi LIU,Derun LI,Jingyun WU,Qi SHEN,Yu FAN,Jie JIN. Predictive effect of the dual-parametric MRI modified maximum diameter of the lesions with PI-RADS 4 and 5 on the clinically significant prostate cancer [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 567-574.
[2] Yuting LIN,Huali WANG,Yu TIAN,Litong GONG,Chun CHANG. Factors influencing cognitive function among the older adults in Beijing [J]. Journal of Peking University (Health Sciences), 2024, 56(3): 456-461.
[3] Yi LIU,Chang-wei YUAN,Jing-yun WU,Qi SHEN,Jiang-xi XIAO,Zheng ZHAO,Xiao-ying WANG,Xue-song LI,Zhi-song HE,Li-qun ZHOU. Diagnostic efficacy of prostate cancer using targeted biopsy with 6-core systematic biopsy for patients with PI-RADS 5 [J]. Journal of Peking University (Health Sciences), 2023, 55(5): 812-817.
[4] Chang-wei YUAN,De-run LI,Zhi-hua LI,Yi LIU,Gang-zhi SHAN,Xue-song LI,Li-qun ZHOU. Application of dynamic contrast enhanced status in multiparametric magnetic resonance imaging for prostatic cancer with PI-RADS 4 lesion [J]. Journal of Peking University (Health Sciences), 2023, 55(5): 838-842.
[5] Ying LIU,Ran HUO,Hui-min XU,Zheng WANG,Tao WANG,Hui-shu YUAN. Correlations between plaque characteristics and cerebral blood flow in patients with moderate to severe carotid stenosis using magnetic resonance vessel wall imaging [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 646-651.
[6] Qiang FU,Guan-ying GAO,Yan XU,Zhuo-hua LIN,You-jing SUN,Li-gang CUI. Comparative study of ultrasound and magnetic resonance imaging in the diagnosis of asymptomatic anterosuperior acetabular labrum tears [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 665-669.
[7] Ying CAI,Qiao-qin WAN,Xian-jie CAI,Ya-juan GAO,Hong-bin HAN. Epidural photobiomodulation accelerates the drainage of brain interstitial fluid and its mechanism [J]. Journal of Peking University (Health Sciences), 2022, 54(5): 1000-1005.
[8] WANG Shu-lei,GAO Yang-xu,ZHANG Hong-wu,YANG Hai-bo,LI Hui,LI Yu,SHEN Li-xue,YAO Hong-xin. Clinical analysis of 30 cases of basal ganglia germinoma in children [J]. Journal of Peking University (Health Sciences), 2022, 54(2): 222-226.
[9] ZHANG Fan,CHEN Qu,HAO Yi-chang,YAN Ye,LIU Cheng,HUANG Yi,MA Lu-lin. Relationship between recovery of urinary continence after laparoscopic radical prostatectomy and preoperative/postoperative membranous urethral length [J]. Journal of Peking University (Health Sciences), 2022, 54(2): 299-303.
[10] Yi-fan WU,Xiao-yuan ZHANG,Shuang REN,Ying-xiang YU,Cui-qing CHANG. Measurement and evaluation of the quadriceps muscle mass in young men based on magnetic resonance imaging [J]. Journal of Peking University (Health Sciences), 2021, 53(5): 843-849.
[11] Hui SHENG,Lei LIANG,Tong-liang ZHOU,Yan-xing JIA,Tong WANG,Lan YUAN,Hong-bin HAN. Improved synthesis process of optical-magnetic bimodal probe of Gd-[4,7-Bis-carboxymethyl-10-(2-fluoresceinthioureaethyl)-1,4,7,10-tetraaza-cyclododec-1-yl]-acetic acid complexes [J]. Journal of Peking University (Health Sciences), 2020, 52(5): 959-963.
[12] Shi-ming ZHAO,Tie-jun YANG,Chun-miao XU,Xiao-feng GUO,Yong-kang MA,Xue-jun CHEN,Xiang LI,Chao-hong HE. Bladder cancer local staging about muscle invasion: 3.0T MRI performance following transurethral resection [J]. Journal of Peking University (Health Sciences), 2020, 52(4): 701-704.
[13] Xing-hong ZHOU,Ying HUANG,Chao YUAN,Shu-guo ZHENG,Jie ZHANG,Jian-guo ZHANG. Awareness and knowledge of oral cancer among 1 483 residents in Beijing [J]. Journal of Peking University (Health Sciences), 2020, 52(2): 323-331.
[14] Yu SONG,Hong-bin HAN,Jun YANG,Ai-bo WANG,Qing-yuan HE,Yuan-yuan LI,Guo-mei ZHAO,Ya-juan GAO,Rui WANG,Yi-xing HAN,Ai-lian LIU,Qing-wei SONG. Effect of convection enhanced delivery on the microstructure of brain extracellular space in aged rats [J]. Journal of Peking University (Health Sciences), 2020, 52(2): 362-367.
[15] Hong-xia YANG,Xiao-lan TIAN,Wei JIANG,Wen-li LI,Qing-yan LIU,Qing-lin PENG,Guo-chun WANG,Xin LU. Clinical and pathological characteristics of immune mediated necrotizing myopathy [J]. Journal of Peking University(Health Sciences), 2019, 51(6): 989-995.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!