Journal of Peking University (Health Sciences) ›› 2020, Vol. 52 ›› Issue (3): 432-437. doi: 10.19723/j.issn.1671-167X.2020.03.006

Previous Articles     Next Articles

Bivariate heritability estimation of resting heart rate and common chronic disease based on extended pedigrees

Hong-chen ZHENG1,En-ci XUE1,Xue-heng WANG1,Xi CHEN1,Si-yue WANG1,Hui HUANG1,Jin JIANG1,Ying YE2,Chun-lan HUANG3,Yun ZHOU4,Wen-jing GAO1,Can-qing YU1,Jun LV1,Xiao-ling WU3,Xiao-ming HUANG3,Wei-hua CAO1,Yan-sheng YAN2,Tao WU(),Li-ming LI1   

  1. 1. Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
    2. Department of Local Disease Control and Prevention, Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350001, China
    3. Department of Hygiene, Nanjing County Center for Disease Control and Prevention, Nanjing 363600 Fujian, China
    4. Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
  • Received:2020-02-16 Online:2020-06-18 Published:2020-06-30
  • Contact: Tao WU E-mail:twu@bjmu.edu.cn
  • Supported by:
    Special Fund for Health Scientific Research of Public Welfare(201502006);Training Project for Young Backbone Talents in Fujian Health System(2014-ZQN-ZD-7)

RICH HTML

  

Abstract:

Objective: To estimate the univariate heritability of resting heart rate and common chronic disease such as hypertension, diabetes, and dyslipidemia based on extended pedigrees in Fujian Tulou area and to explore bivariate heritability to test for the genetic correlation between resting heart rate and other relative phenotypes.Methods: The study was conducted in Tulou area of Nanjing County, Fujian Province from August 2015 to December 2017. The participants were residents with Zhang surname and their relatives from Taxia Village, Qujiang Village, and Nanou Village or residents with Chen surname and their relatives from Caoban Village, Tumei Village, and Beiling Village. The baseline survey recruited 1 563 family members from 452 extended pedigrees. The pedigree reconstruction was based on the family information registration and the genealogy booklet. Univariate and bivariate heritability was estimated using variance component models for continuous variables, and susceptibility-threshold model for binary variables.Results: The pedigree reconstruction identified 1 seven-generation pedigree, 2 five-generation pedigrees, 23 four-generation pedigrees, 186 three-generation pedigrees, and 240 two-generation pedigrees. The mean age of the participants was 57.2 years and the males accounted for 39.4%. The prevalence of hypertension, diabetes, dyslipidemia in this population was 49.2%, 10.0%, and 45.2%, respectively. The univariate heritability estimation of resting heart rate, hypertension, and dyslipidemia was 0.263 (95%CI: 0.120-0.407), 0.404 (95%CI: 0.135-0.673), and 0.799 (95%CI: 0.590-1), respectively. The heritability of systolic blood pressure, diastolic blood pressure, fasting glucose, total cholesterol, triglyceride, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol was 0.379, 0.306, 0.393, 0.452, 0.568, 0.852, and 0.387, respectively. In bivariate analysis, there were phenotypic correlations between resting heart rate with hypertension, diabetes, diastolic blood pressure, fasting glucose, and triglyceride. After taking resting heart rate into account, there were strong genetic correlations between resting heart rate with fasting glucose (genetic correlation 0.485, 95%CI: 0.120-1, P<0.05) and diabetes (genetic correlation 0.795, 95%CI: 0.181-0.788, P<0.05).Conclusion: Resting heart rate was a heritable trait and correlated with several common chronic diseases and related traits. There was strong genetic correlation between resting heart rate with fasting glucose and diabetes, suggesting that they may share common genetic risk factors.

Key words: Heritability, Pedigree, Resting heart rate, Hypertension, Diabetes

CLC Number: 

  • R181.3+3

Table 1

Demographic characteristics of participants"

Characteristics Male Female Total P
Gender, n(%) 681 (39.4) 882 (60.6) 1 563 (100)
Age/years, x?±s 58.4 ±13.0 56.4±13.4 57.2±13.2 <0.05
Marriage status, n(%) <0.05
Married 632 (92.8) 768 (87.1) 1400 (89.6)
Divorce/Widowed 29 (4.3) 96 (10.9) 125 (8.0)
Unmarried 20 (2.9) 18 (2.0) 38 (2.4)
Education level, n(%) <0.05
Below primary 115 (16.9) 417 (47.3) 532 (34.0)
Primary 221 (32.5) 222 (25.2) 443 (28.3)
Junior high 222 (32.6) 149 (16.9) 371 (23.7)
Senior high 101 (14.8) 66 (7.5) 167 (10.7)
College or above 22 (3.2) 28 (3.2) 50 (3.2)
Occupation, n(%) <0.05
Farmer or worker 371 (54.5) 368 (41.7) 739 (47.3)
Administrator or professional 30 (4.4) 28 (3.2) 58 (3.7)
Retiree or student 115 (16.9) 51 (5.8) 166 (10.6)
Household 120 (17.6) 99 (11.2) 219 (14.0)
Other 45 (6.6) 336 (38.1) 381 (24.4)
Smoking status, n(%) <0.05
Current smoking 283 (41.6) 22 (2.5) 305 (19.5)
Ex-smoking 94 (13.8) 3 (0.3) 97 (6.2)
Never smoking 304 (44.6) 857 (97.2) 1161 (74.3)
Alcohol consumption, n(%) <0.05
Current drinking 137 (20.1) 29 (3.3) 166 (10.6)
Ex-drinking 31 (4.6) 6 (0.7) 37 (2.4)
Never drinking 513 (75.3) 847 (96.0) 1360 (87.0)
Hypertension, n(%) 367 (53.9) 402 (45.6) 769 (49.2) <0.05
Diabetes, n(%) 88 (12.9) 69 (7.8) 157 (10.0) <0.05
Dyslipidemia, n(%) 347 (51.0) 359 (40.7) 706 (45.2) <0.05
BMI/(kg/m2), x?±s 23.4±3.5 23.3±3.2 23.4±3.3 0.56
SBP/mmHg), x?±s 139.6±20.5 137.3±22.3 138.3±21.5 <0.05
DBP (mm Hg), x?±s 82.2±11.3 78.2±11.2 79.9±11.4 <0.05
Resting heart rate/ (/min), x?±s 78.3±11.2 77.9±10.2 78.1±10.6 0.47

Table 2

Basic information of pedigree reconstruction"

Generation Pedigrees Total family members Investigated members Average investigated members per pedigree Investigation ratio/%
2 240 751 503 2.10 70.0
3 186 1 575 814 4.38 51.7
4 23 380 191 8.30 50.3
5 2 50 23 11.5 46.0
7 1 62 32 32 51.6

Table 3

Univariate heritability of resting heart rate and common chronic diseases"

Variables Effect of covariatesa Heritability (95%CI) P
Resting heart rate 0.022 0.263 (0.120-0.407) <0.001
Hypertension - 0.404 (0.135-0.673) 0.001
Diabetes - 0.272 (-0.164-0.708) 0.11
Dyslipidemia - 0.799 (0.590-1.000) <0.001
SBP 0.187 0.379 (0.213-0.545) <0.001
DBP 0.069 0.306 (0.155-0.458) <0.001
Fasting glucoseb 0.054 0.393 (0.244-0.543) <0.001
Total cholesterolb 0.034 0.452 (0.306-0.598) <0.001
Triglycerideb 0.040 0.568 (0.429-0.707) <0.001
HDL-Cb 0.037 0.852 (0.741-0.964) <0.001
LDL-C 0.042 0.387 (0.236-0.538) <0.001

Table 4

Bivariate heritability of resting heart rate and common chronic diseases"

Variables Environmental correlation Pa Genetic correlation (95%CI) Pb Pc Phenotypic correlation Pd
Hypertension 0.163 0.13 -0.086 (-0.515-0.343) 0.70 <0.05 0.080 <0.05
Diabetes -0.108 0.41 0.795 (0.120-1.000) <0.05 0.31 0.159 <0.05
Dyslipidemia 0.297 0.08 -0.170 (-0.467-0.128) 0.25 <0.05 0.034 0.29
SBP 0.126 0.13 -0.188 (-0.486-0.110) 0.30 <0.05 0.026 0.32
DBP 0.344 <0.05 -0.214 (-0.625-0.197) 0.27 <0.05 0.187 <0.05
Fasting glucosee 0.068 0.40 0.485 (0.181-0.788) <0.05 <0.05 0.203 <0.05
Total cholesterole 0.100 0.23 -0.151 (-0.463-0.161) 0.34 <0.05 0.011 0.68
Triglyceridee 0.185 <0.05 -0.129 (-0.413-0.156) 0.37 <0.05 0.054 <0.05
HDL-Ce -0.015 0.91 0.022 (-0.204-0.249) 0.85 <0.05 0.005 0.83
LDL-C 0.051 0.52 -0.171 (-0.505-0.162) 0.32 <0.05 -0.021 0.41
[1] Diaz A, Bourassa MG, Guertin MC, et al. Long-term prognostic value of resting heart rate in patients with suspected or proven coronary artery disease[J]. Eur Heart J, 2005,26(10):967-974.
pmid: 15774493
[2] Hansen CS, Færch K, Jϕrgensen ME, et al. Heart rate, autonomic function, and future changes in glucose metabolism in individuals without diabetes: the whitehall II cohort study[J]. Diabetes care, 2019,42(5):867-874.
pmid: 30940642
[3] Inoue T, Iseki K, Iseki C, et al. Higher heart rate predicts the risk of developing hypertension in a normotensive screened cohort[J]. Circ J, 2007,71(11):1755-1760.
pmid: 17965497
[4] Wang B, Liao C, Zhou B, et al. Genetic contribution to the variance of blood pressure and heart rate: a systematic review and meta-regression of twin studies[J]. Twin Res Hum Genet, 2015,18(2):158-170.
[5] Pilia G, Chen WM, Scuteri A, et al. Heritability of cardiovascular and personality traits in 6,148 Sardinians[J]. PLoS Genet, 2006,2(8):e132.
pmid: 16934002
[6] Nolte IM, Munoz ML, Tragante V, et al. Genetic loci associated with heart rate variability and their effects on cardiac disease risk[J]. Nat Commun, 2017,8:15805.
pmid: 28613276
[7] Hopper JL, Bishop DT, Easton DF. Population-based family studies in genetic epidemiology[J]. Lancet, 2005,366(9494):1397-1406.
pmid: 16226618
[8] Muñoz ML, Jaju D, Voruganti S, et al. Heritability and genetic correlations of heart rate variability at rest and during stress in the Oman family study[J]. J Hypertens, 2018,36(7):1477-1485.
[9] 黄辉, 叶莺, 黄春兰, 等. 福建土楼家系队列研究:研究方法及调查对象基线和家系特征[J]. 中华流行病学杂志, 2018,39(10):1402-1407.
[10] 中国高血压防治指南修订委员会. 中国高血压防治指南2010[J]. 中华心血管病杂志, 2011,39(7):579-616.
[11] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2013年版)[J]. 中华内分泌代谢杂志, 2014,30(10):893-942.
[12] 中国成人血脂异常防治指南修订联合委员会. 中国成人血脂异常防治指南(2016年修)[J]. 中华心血管病杂志, 2016,44(10):833-853.
[13] Almasy L, Blangero J. Multipoint quantitative-trait linkage analysis in general pedigrees[J]. Am J Hum Genet, 1998,62(5):1198-1211.
[14] Man T, Riese H, Jaju D, et al. Heritability and genetic and environmental correlations of heart rate variability and baroreceptor reflex sensitivity with ambulatory and beat-to-beat blood pressure[J]. Sci Rep, 2019,9(1):1664.
pmid: 30733514
[15] Lu J, Lu Y, Wang X, et al. Prevalence, awareness, treatment, and control of hypertension in China: data from 1.7 million adults in a population-based screening study (China PEACE Million Persons Project)[J]. Lancet, 2017,390(10112):2549-2558.
doi: 10.1016/S0140-6736(17)32478-9 pmid: 29102084
[16] Wang J, Zhang L, Wang F, et al. Prevalence, awareness, treatment, and control of hypertension in China: results from a national survey[J]. Am J Hypertens, 2014,27(11):1355-1361.
[17] Yang L, Shao J, Bian Y, et al. Prevalence of type 2 diabetes mellitus among inland residents in China (2000-2014): a meta-analysis[J]. J Diabetes Investig, 2016,7(6):845-852.
[18] Padmanabhan S, Caulfield M, Dominiczak AF. Genetic and molecular aspects of hypertension[J]. Circ Res, 2015,116(6):937-959.
pmid: 25767282
[19] Adeyemo AA, Omotade OO, Rotimi CN, et al. Heritability of blood pressure in Nigerian families[J]. J Hypertens, 2002,20(5):859-863.
pmid: 12011645
[20] 潘发明, 臧桐华, 佳桐倪. 血压的遗传度分析[J]. 中国公共卫生, 2002,18(9):1030-1032.
[21] Xu C, Zhong J, Zhu H, et al. Independent and interactive associations of heart rate and body mass index or blood pressure with type 2 diabetes mellitus incidence: a prospective cohort study[J]. J Diabetes Investig, 2019,10(4):1068-1074.
pmid: 30592161
[22] Grantham NM, Magliano DJ, Tanamas SK, et al. Higher heart rate increases risk of diabetes among men: the Australian diabetes obesity and lifestyle (AusDiab) study[J]. Diabet Med, 2013,30(4):421-427.
[23] Bulik-Sullivan B, Finucane HK, Anttila V, et al. An atlas of genetic correlations across human diseases and traits[J]. Nat Genet, 2015,47(11):1236-1241.
[24] Guo Y, Chung W, Zhu Z, et al. Genome-wide assessment for resting heart rate and shared genetics with cardiometabolic traits and type 2 diabetes[J]. J Am Coll Cardiol, 2019,74(17):2162-2174.
pmid: 31648709
[25] Lahiri MK, Kannankeril PJ, Goldberger JJ. Assessment of autonomic function in cardiovascular disease: physiological basis and prognostic implications[J]. J Am Coll Cardiol, 2008,51(18):1725-1733.
[26] Zhao Y, Zhang M, Liu Y, et al. 6-year change in resting heart rate is associated with incident type 2 diabetes mellitus[J]. Nutr Metab Cardiovasc Dis, 2019,29(3):236-243.
[1] Enci XUE, Xi CHEN, Xueheng WANG, Siyue WANG, Mengying WANG, Jin LI, Xueying QIN, Yiqun WU, Nan LI, Jing LI, Zhibo ZHOU, Hongping ZHU, Tao WU, Dafang CHEN, Yonghua HU. Single nucleotide polymorphism heritability of non-syndromic cleft lip with or without cleft palate in Chinese population [J]. Journal of Peking University (Health Sciences), 2024, 56(5): 775-780.
[2] Peiheng ZHANG, Ying GAO, Honghua WU, Jian ZHANG, Junqing ZHANG. Fulminant type 1 diabetes mellitus with acute pancreatitis: A case report and literature review [J]. Journal of Peking University (Health Sciences), 2024, 56(5): 923-927.
[3] Yujia MA,Ranli LU,Zechen ZHOU,Xiaoyi LI,Zeyu YAN,Yiqun WU,Dafang CHEN. Association between insomnia and type 2 diabetes: A two-sample Mendelian rando-mization study [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 174-178.
[4] Chu-yun CHEN,Peng-fei SUN,Jing ZHAO,Jia JIA,Fang-fang FAN,Chun-yan WANG,Jian-ping LI,Yi-meng JIANG,Yong HUO,Yan ZHANG. Related factors of endogenous erythropoietin and its association with 10-year risks of cardiovascular disease in a community-based Chinese study [J]. Journal of Peking University (Health Sciences), 2023, 55(6): 1068-1073.
[5] Lei BAO,Xia-xia CAI,Ming-yuan ZHANG,Lei-lei REN. Effect of vitamin D3 on mild cognitive impairment in type 2 diabetic mice and its possible mechanism [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 587-592.
[6] Xue-heng WANG,Si-yue WANG,He-xiang PENG,Meng FAN,Huang-da GUO,Tian-jiao HOU,Meng-ying WANG,Yi-qun WU,Xue-ying QIN,Xun TANG,Jin LI,Da-fang CHEN,Yong-hua HU,Tao WU. Genotype-environment interaction on arterial stiffness: A pedigree-based study [J]. Journal of Peking University (Health Sciences), 2023, 55(3): 400-407.
[7] Xiao-yue ZHANG,Yu-xin LIN,Ying JIANG,Lan-chao ZHANG,Mang-yan DONG,Hai-yi CHI,Hao-yu DONG,Li-jun MA,Zhi-jing LI,Chun CHANG. Mediating effect of self-efficacy on self-management ability and self-management behavior in patients with type 2 diabetes mellitus [J]. Journal of Peking University (Health Sciences), 2023, 55(3): 450-455.
[8] Huan YU,Ruo-tong YANG,Si-yue WANG,Jun-hui WU,Meng-ying WANG,Xue-ying QIN,Tao WU,Da-fang CHEN,Yi-qun WU,Yong-hua HU. Metformin use and risk of ischemic stroke in patients with type 2 diabetes: A cohort study [J]. Journal of Peking University (Health Sciences), 2023, 55(3): 456-464.
[9] Zhe LIANG,Fang-fang FAN,Yan ZHANG,Xian-hui QIN,Jian-ping LI,Yong HUO. Rate and characteristics of H-type hypertension in Chinese hypertensive population and comparison with American population [J]. Journal of Peking University (Health Sciences), 2022, 54(5): 1028-1037.
[10] Yu-chao HUANG-FU,Yi-qing DU,Lu-ping YU,Tao XU. Risk factors of persistent hypertension in primary aldosteronism patients after surgery [J]. Journal of Peking University (Health Sciences), 2022, 54(4): 686-691.
[11] Yang-yang CHEN,Yu-bo ZHOU,Jing YANG,Yu-meng HUA,Peng-bo YUAN,Ai-ping LIU,Yuan WEI. Effects of gestational weight on the association between serum high sensitivity C reaction protein and gestational diabetes mellitus among twin gestations: A cohort study [J]. Journal of Peking University (Health Sciences), 2022, 54(3): 427-433.
[12] Jia-min WANG,Qiu-ping LIU,Ming-lu ZHANG,Chao GONG,Shu-dan LIU,Wei-ye CHEN,Peng SHEN,Hong-bo LIN,Pei GAO,Xun TANG. Effectiveness of different screening strategies for type 2 diabete on preventing cardiovascular diseases in a community-based Chinese population using a decision-analytic Markov model [J]. Journal of Peking University (Health Sciences), 2022, 54(3): 450-457.
[13] Zhi-sheng LI,Hao-nan QIAN,Tian-yuan FAN. Preparation and in vitro evaluation of fused deposition modeling 3D printed compound tablets of captopril and hydrochlorothiazide [J]. Journal of Peking University (Health Sciences), 2022, 54(3): 572-577.
[14] WU Jun-hui,WU Yi-qun,WU Yao,WANG Zi-jing,WU Tao,QIN Xue-ying,WANG Meng-ying,WANG Xiao-wen,WANG Jia-ting,HU Yong-hua. Incidence and risk factors of ischemic stroke in patients with type 2 diabetes among urban workers in Beijing, China [J]. Journal of Peking University (Health Sciences), 2022, 54(2): 249-254.
[15] XU Xin-ran,HUO Peng-cheng,HE Lu,MENG Huan-xin,ZHU Yun-xuan,JIN Dong-si-qi. Comparison of initial periodontal therapy and its correlation with white blood cell level in periodontitis patients with or without diabetes mellitus [J]. Journal of Peking University (Health Sciences), 2022, 54(1): 48-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!