Journal of Peking University (Health Sciences) ›› 2022, Vol. 54 ›› Issue (3): 412-420. doi: 10.19723/j.issn.1671-167X.2022.03.004

Previous Articles     Next Articles

Interaction between ischemic stroke risk loci identified by genome-wide association studies and sleep habits

Ruo-tong YANG,Meng-ying WANG,Chun-nan LI,Huan YU,Xiao-wen WANG,Jun-hui WU,Si-yue WANG,Jia-ting WANG,Da-fang CHEN,Tao WU,Yong-hua HU*()   

  1. Department of epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
  • Received:2022-02-27 Online:2022-06-18 Published:2022-06-14
  • Contact: Yong-hua HU E-mail:yhhu@bjmu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(81230066);the National Natural Science Foundation of China(81473043);the National Natural Science Foundation of China(81703291);the National Natural Science Foundation of China(81872695)

RICH HTML

  

Abstract:

Objective: To explore the relationship between sleep habits (sleep duration, sleep efficiency, sleep onset timing) and ischemic stroke, and whether there is an interaction between sleep habits and ischemic stroke susceptibility gene loci. Methods: A questionnaire survey, physical examination, blood biochemical testing and genotyping were conducted among rural residents in Beijing, and the gene loci of ischemic stroke suggested by previous genome-wide association studies (GWAS) were screened. Multivariable generalized linear model was used to analyze the correlation between sleep habits, sleep-gene interaction and ischemic stroke. Results: A total of 4 648 subjects with an average age of (58.5±8.7) years were enrolled, including 1 316 patients with ischemic stroke. Compared with non-stroke patients, stroke patients with sleep duration ≥9 hours, sleep efficiency < 80%, and sleep onset timing earlier than 22:00 accounted for a higher proportion (P < 0.05). There was no significant association between sleep duration and risk of ischemic stroke (OR=1.04, 95%CI: 0.99-1.10, P=0.085). Sleep efficiency was inversely associated with the risk of ischemic stroke (OR=0.18, 95%CI: 0.06-0.53, P=0.002). The risk of ischemic stroke in the subjects with sleep efficiency < 80% was 1.47-fold (95%CI: 1.03-2.10, P=0.033) of that in the subjects with sleep efficiency ≥80%. Falling asleep earlier than 22:00 was associated with 1.26 times greater risk of stroke than falling asleep between 22:00 and 22:59 (95%CI: 1.04-1.52, P=0.017). Multifactorial adjustment model showed that rs579459 on ABO gene had an interaction with sleep time (P for interaction =0.040). When there were two T alleles for rs579459 on the ABO gene, those who fell asleep before 22:00 had 1.56 times (95%CI: 1.20-2.04, P=0.001) the risk of stroke compared with those who fell asleep between 22:00 and 22:59, and there was no significant difference when the number of pathogenic alleles was 0 or 1. In the model adjusted only for gender, age and family structure, sleep duration and the number of T allele rs2634074 on PITX2 gene had an interaction with ischemic stroke (P for interaction=0.033). Conclusion: Decreased sleep efficiency is associated with increased risk of ischemic stroke, and falling asleep earlier than 22:00 is associated with higher risk of ischemic stroke. Sleep onset timing interacted with rs579459 in ABO gene and the risk of ischemic stroke. Sleep duration and PITX2 rs2634074 may have a potential interaction with ischemic stroke risk.

Key words: Gene loci, Sleep, Ischemic stroke, Interaction

CLC Number: 

  • R181

Table 1

Basic characteristics of participants"

Items Total
(n= 4 648)
Participants without IS
(n= 3 332)
Participants with IS
(n= 1 316)
P
Age/years, $\bar x \pm s$ 58.5±8.7 57.5±8.7 60.8±8.3 < 0.001
Male, n (%) 2 112 (45.4) 1 384 (41.5) 728 (55.3) < 0.001
Married, n (%) 4 060 (87.4) 2 934 (88.0) 1 126 (85.6) < 0.001
Junior high school education or above, n (%) 2 574 (55.4) 1 962 (58.9) 612 (46.5) < 0.001
Annual household income /10 000 yuan, $\bar x \pm s$ 3.0±4.4 3.2±4.5 2.5±4.2 < 0.001
Smoker, n (%) 1 303 (28.0) 910 (27.3) 393 (29.9) < 0.001
Drinker, n (%) 1 307 (28.1) 971 (29.1) 336 (25.5) < 0.001
Adequate exercise, n (%) 892 (19.2) 673 (20.2) 219 (16.6) 0.006
Vegetables≥300 g/d and fruits≥200 g/d, n (%) 2 988 (64.3) 2 149 (64.5) 839 (63.8) 0.634
BMI/(kg/m2), $\bar x \pm s$ 26.2±3.5 26.1±3.6 26.3±3.4 0.126
Total cholesterol/(mmol/L), $\bar x \pm s$ 3.0±1.1 3.1±1.1 2.9±1.1 0.001
Hypertension, n (%) 3 328 (71.6) 2 182 (65.5) 1 146 (87.1) < 0.001
Diabetes, n (%) 2 449 (52.7) 1 826 (54.8) 623 (47.4) < 0.001
Coronary heart disease, n (%) 1 034 (22.3) 668 (20.1) 366 (27.8) < 0.001
Family medical history, n (%)
  IS 2 887 (62.1) 1 769 (53.1) 1 118 (85.0) < 0.001
  Diabetes 3 696 (79.5) 2 838 (85.2) 858 (65.2) < 0.001
  Coronary heart disease 2 299 (49.5) 1 743 (52.3) 556 (42.3) < 0.001
Sleep duration/h, n (%) < 0.001
   < 7 1 031 (22.2) 758 (22.8) 273 (20.7)
  7.0-8.9 2 393 (51.5) 1 768 (53.1) 625 (47.5)
  ≥9 1 224 (26.3) 806 (24.2) 418 (31.8)
Sleep efficiency/%, n (%) 0.015
  ≥80 4 378 (94.2) 3 156 (94.7) 1 222 (92.9)
   < 80 270 (5.8) 176 (5.3) 94 (7.1)
Sleep onset timing, n (%) < 0.001
   < 22:00 1 111 (23.9) 688 (20.7) 423 (32.1)
  22:00-22:59 1 844 (39.7) 1 354 (40.6) 490 (37.2)
  23:00-23:59 1 058 (22.8) 822 (24.7) 236 (17.9)
  ≥24:00 635 (13.7) 468 (14.1) 167 (12.7)

Table 2

Relationship between sleep behaviors and ischemic stroke"

Sleep behaviors Model 1 Model 2
OR (95%CI) P OR (95%CI) P
Sleep duration/h 1.04 (0.99, 1.08) 0.115 1.04 (0.99, 1.10) 0.085
   < 7 1.04 (0.90, 1.29) 0.407 1.01 (0.83, 1.24) 0.895
  7.0-8.9 1.00 1.00
  ≥9 1.22 (1.04, 1.43) 0.016 1.17 (0.98, 1.40) 0.081
Sleep efficiency/% 0.10 (0.04, 0.26) < 0.001 0.18 (0.06, 0.53) 0.002
  ≥80 1.00 1.00
   < 80 1.71 (1.25, 2.34) 0.001 1.47 (1.03, 2.10) 0.033
Sleep onset timing
   < 22:00 1.44 (1.22, 1.71) < 0.001 1.26 (1.04, 1.52) 0.017
  22:00-22:59 1.00 1.00
  23:00-23:59 0.86 (0.72, 1.04) 0.118 0.93 (0.76, 1.15) 0.517
  ≥24:00 0.86 (0.67, 1.10) 0.223 0.86 (0.66, 1.13) 0.291

Table 3

Basic information of positive SNPs suggested by genome-wide association studies (GWAS) and their association with ischemic stroke"

Chromosome rsID Gene n MAF Risk allele OR (95%CI) P P
1 rs225132 ERRFI1 4 448 0.34 T 1.09 (0.99, 1.21) 0.083 1.000
1 rs10489177 C1orf156 4 421 0.32 G 1.27 (1.15, 1.41) < 0.001* < 0.001*
2 rs780094 GCKR 3 440 0.47 G 1.03 (0.92, 1.14) 0.629 1.000
2 rs2292832 miR-149 3 394 0.32 T 1.04 (0.93, 1.17) 0.462 1.000
3 rs16851055 SPSB4 4 380 0.20 G 1.16 (1.03, 1.31) 0.015* 0.405
4 rs2200733 PITX2 3 345 0.48 T 1.03 (0.93, 1.15) 0.534 1.000
4 rs2634074 PITX2 4 199 0.40 T 1.23 (1.12, 1.36) < 0.001* < 0.001*
5 rs1428155 GLRA1 3 405 0.32 C 1.03 (0.92, 1.15) 0.597 1.000
5 rs2910164 miR-146a 4 402 0.47 G 0.97 (0.88, 1.07) 0.557 1.000
6 rs556621 HCG27 3 377 0.50 A 1.07 (0.97, 1.19) 0.178 1.000
7 rs662 PON1 3 400 0.37 A 1.12 (1.00, 1.25) 0.042* 1.000
7 rs3735590 PON1 3 444 0.14 C 1.11 (0.96, 1.30) 0.169 1.000
9 rs579459 ABO 4 418 0.34 T 1.29 (1.17, 1.42) < 0.001* < 0.001*
9 rs2383207 CDKN2B-AS1 3 438 0.33 A 1.03 (0.92, 1.15) 0.590 1.000
9 rs505922 ABO 4 419 0.48 C 0.96 (0.88, 1.06) 0.446 1.000
10 rs11196288 HABP2 4 391 0.36 G 1.03 (0.93, 1.14) 0.593 1.000
11 rs660599 MMP-12 3 438 0.12 T 0.95 (0.81, 1.11) 0.518 1.000
12 rs12425791 NINJ2 4 409 0.25 A 0.99 (0.89, 1.11) 0.868 1.000
12 rs11614913 MIR-196A2 4 328 0.50 C 0.98 (0.89, 1.08) 0.702 1.000
12 rs10849373 NINJ2 4 423 0.14 G 1.51 (1.28, 1.79) < 0.001* < 0.001*
12 rs11833579 NINJ2 4 378 0.34 A 1.06 (0.95, 1.17) 0.301 1.000
14 rs1952706 PTCSC3 3 867 0.49 C 0.97 (0.87, 1.07) 0.496 1.000
14 rs2787417 PTCSC3 4 362 0.49 T 0.95 (0.86, 1.04) 0.280 1.000
14 rs934075 PTCSC3 4 415 0.49 G 0.97 (0.88, 1.06) 0.481 1.000
16 rs12445022 JPH3 4 441 0.10 A 1.06 (0.91, 1.23) 0.457 1.000
16 rs879324 ZFHX3 3 433 0.34 T 1.08 (0.97, 1.20) 0.177 1.000
16 rs7193343 ZFHX3 4 428 0.41 T 1.14 (1.03, 1.26) 0.008* 0.216

Table 4

Association between sleep behaviors, rs579459 on ABO gene and IS"

rs579459 number of pathogenic alleles Model 1 Model 2
0(n=784) 1(n=435) 2(n=201) Pint 0(n=784) 1(n=1435) 2(n=2201) Pint
Sleep duration/ h 1.11 (0.97, 1.27) 1.04 (0.96, 1.12) 1.02(0.96, 1.08) 0.889 1.15(0.99, 1.34) 1.03(0.94, 1.13) 1.03 (0.96, 1.11) 0.668
   < 7 0.82 (0.47, 1.37) 1.12 (0.81, 1.55) 1.15(0.89, 1. 48) 0.65 (0.35, 1.18) 1.07(0.74, 1.53) 1.14(0.86, 1.51)
  7.0 ~8.9 1.00 1.00 1.00 1.00 1.00 1.00
  ≥9 1.72 (1.08, 2.72) 1.29 (0.96, 1.72) 1.06(0.84, 1.33) 1.97 (1.15, 3.39) 1.15(0.83, 1.61)) 1.10 (0.85, 1.42)
Sleep efficiency/% 0.57 (0.07, 5.72) 0.04 (0.01, 0.23) 0.06 (0.01, 0.26) 0.576 0.87(0.07, 13.53) 0.06(0.01, 0.38) 0.16 (0.03, 0.86) 0.661
  ≥80 1.00 1.00 1.00 1.00 1.00 1.00
   < 80 0.70(0.26, 1.74) 2.32 (1.35, 4.02) 1.55(0.97, 2.46) 0.62(0.21, 1.74) 1.85 (1.00, 3.43) 1.27 (0.75, 2.15)
Sleep onset timing
   < 22:00 0.78 (0.47, 1.28) 1.21(0.89, 1.66) 1.83 (1.44, 2.32) 0.007 0.65 (0.35, 1.17) 1.02 (0.72, 1.45) 1.56(1.20, 2.04)0.040 0.040
  22:00 -22:59 1.00 1.00 1.00 1.00 1.00 1.00
  23:00 -23:59 0.84 (0.50, 1.40) 0.91 (0.65, 1.27) 0.85 (0.65, 1.10) 0.782 0.70 (0.38, 1.25) 1.00 (0.69, 1.44) 0.97 (0.72, 1.29) 0.310
  ≥24:00 1.63 (0.83, 3.10) 0.72 (0.45, 1.11) 0.84 (0.59, 1.19) 0.719 1.45 (0.67, 3.07) 0.72 (0.44, 1.17) 0.88 (0.59, 1.29) 0.954

Table 5

Association between sleep behaviors, rs2634074 on PITX2 gene and IS"

rs2634074 number of pathogenic alleles Model 1 Model 2
0(n=935) 1(n=1469) 2(n=1795) Pint 0(n=935) 1(n=1469) 2(n=1795) Pint
Sleep duration /h 1.14 (1.02, 1.28) 1.08 (0.99, 1.17) 0.97 (0.90, 1.03) 0.033 1.15 (1.02, 1.31) 1.09 (0.99, 1.20) 0.97 (0.90, 1.05) 0.060
   < 7 0.74 (0.45, 1.20) 1.01 (0.72, 1.42) 1.18 (0.90, 1.55) 0.73 (0.43, 1.24) 0.94 (0.64, 1.37) 1.11 (0.82, 1.50)
  7.0 -8.9 1.00 1.00 1.00 1.00 1.00 1.00
  ≥9 1.66 (1.12, 2.45) 1.19 (0.89, 1.60) 1.01 (0.79, 1.30) 1.71 (1.10, 2.65) 1.18 (0.85, 1.64) 1.00 (0.75, 1.33)
Sleep efficiency /% 0.08 (0.01, 0.73) 0.24 (0.05, 1.27) 0.04 (0.01, 0.24) 0.532 0.14 (0.01, 1.58) 0.61 (0.09, 4.49) 0.03 (0.00, 0.23) 0.230
  ≥80 1.00 1.00 1.00 1.00 1.00 1.00
   < 80 1.62 (0.71, 3.62) 1.58 (0.90, 2.74) 1.76 (1.04, 2.96) 1.35 (0.54, 3.32) 1.22 (0.64, 2.29) 1.84 (1.02, 3.33)
Sleep onsettiming
   < 22:00 1.00 (0.65, 1.54) 1.58 (1.16, 2.17) 1.52 (1.17, 1.98) 0.606 0.80 (0.49, 1.29) 1.22 (0.85, 1.74) 1.45 (1.08, 1.94) 0.223
  22:00 -22:59 1.00 1.00 1.00 1.00 1.00 1.00
  23:00 -23:59 1.13 (0.71, 1.77) 0.86 (0.62, 1.20) 0.78 (0.58, 1.05) 0.398 1.30 (0.78, 2.14) 0.85 (0.58, 1.22) 0.88 (0.64, 1.22) 0.505
  ≥24:00 0.99 (0.52, 1.81) 1.01 (0.66, 1.54) 0.76 (0.50, 1.13) 0.785 0.86 (0.42, 1.70) 0.93 (0.58, 1.49) 0.83 (0.53, 1.29) 0.625
1 Li W , Wang D , Cao S , et al. Sleep duration and risk of stroke events and stroke mortality: A systematic review and meta-analysis of prospective cohort studies[J]. Int J Cardiol, 2016, 223, 870- 876.
doi: 10.1016/j.ijcard.2016.08.302
2 Titova OE , Michaëlsson K , Larsson SC . Sleep duration and stroke: Prospective cohort study and mendelian randomization analysis[J]. Stroke, 2020, 51 (11): 3279- 3285.
doi: 10.1161/STROKEAHA.120.029902
3 Zhou L , Yu K , Yang L , et al. Sleep duration, midday napping, and sleep quality and incident stroke: The Dongfeng-Tongji cohort[J]. Neurology, 2020, 94 (4): e345- e356.
doi: 10.1212/WNL.0000000000008739
4 Song Q , Liu X , Zhou W , et al. Long sleep duration and risk of ischemic stroke and hemorrhagic stroke: the Kailuan prospective study[J]. Sci Rep, 2016, 6, 33664.
doi: 10.1038/srep33664
5 Reed DL , Sacco WP . Measuring sleep efficiency: What should the denominator be[J]. J Clin Sleep Med, 2016, 12 (2): 263- 266.
doi: 10.5664/jcsm.5498
6 Didikoglu A , Maharani A , Tampubolon G , et al. Longitudinal sleep efficiency in the elderly and its association with health[J]. J Sleep Res, 2020, 29 (3): e12898.
7 Hirata T , Nakamura T , Kogure M , et al. Reduced sleep efficiency, measured using an objective device, was related to an increased prevalence of home hypertension in Japanese adults[J]. Hypertens Res, 2020, 43 (1): 23- 29.
doi: 10.1038/s41440-019-0329-0
8 Yan B , Yang J , Zhao B , et al. Objective sleep efficiency predicts cardiovascular disease in a community population: The sleep heart health study[J]. J Am Heart Assoc, 2021, 10 (7): e016201.
doi: 10.1161/JAHA.120.016201
9 Portaluppi F , Tiseo R , Smolensky MH , et al. Circadian rhythms and cardiovascular health[J]. Sleep Med Rev, 2012, 16 (2): 151- 166.
doi: 10.1016/j.smrv.2011.04.003
10 Shahram N , Reed AB , Dillon OB , et al. Accelerometer-derived sleep onset timing and cardiovascular disease incidence: A UK Biobank cohort study[J]. Eur Heart J Digital Health, 2021, (4): 4.
11 Korostovtseva L . Ischemic stroke and sleep: The linking genetic factors[J]. Cardiol Ther, 2021, 10 (2): 349- 375.
doi: 10.1007/s40119-021-00231-9
12 Fan M , Sun D , Zhou T , et al. Sleep patterns, genetic suscepti-bility, and incident cardiovascular disease: A prospective study of 385 292 UK BioBank participants[J]. Eur Heart J, 2020, 41 (11): 1182- 1189.
doi: 10.1093/eurheartj/ehz849
13 王梦莹, 唐迅, 秦雪英, 等. 北方农村地区居民常见慢性非传染性疾病的家系队列研究进展[J]. 中华流行病学杂志, 2018, 39 (1): 94- 97.
doi: 10.3760/cma.j.issn.0254-6450.2018.01.020
14 孙可欣, 刘志科, 曹亚英, 等. 北京某社区2型糖尿病患者血糖控制情况与肱踝脉搏波传导速度的相关性研究[J]. 北京大学学报(医学版), 2015, 47 (3): 431- 436.
doi: 10.3969/j.issn.1671-167X.2015.03.012
15 Ohayon M , Wickwire EM , Hirshkowitz M , et al. National Sleep Foundation's sleep quality recommendations: first report[J]. Sleep Health, 2017, 3 (1): 6- 19.
doi: 10.1016/j.sleh.2016.11.006
16 Cheng YC , Stanne TM , Giese AK , et al. Genome-wide association analysis of young-onset stroke identifies a locus on chromosome 10q25 near HABP2[J]. Stroke, 2016, 47 (2): 307- 316.
doi: 10.1161/STROKEAHA.115.011328
17 Malik R , Chauhan G , Traylor M , et al. Multiancestry genome-wide association study of 520 000 subjects identifies 32 loci associated with stroke and stroke subtypes[J]. Nat Genet, 2018, 50 (4): 524- 537.
doi: 10.1038/s41588-018-0058-3
18 Gretarsdottir S , Thorleifsson G , Manolescu A , et al. Risk variants for atrial fibrillation on chromosome 4q25 associate with ischemic stroke[J]. Ann Neurol, 2008, 64 (4): 402- 409.
doi: 10.1002/ana.21480
19 Neurology working group of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium , the stroke genetics network (SiGN) , the International Stroke Genetics Consortium (ISGC) . Identification of additional risk loci for stroke and small vessel disease: A meta-analysis of genome-wide association studies[J]. Lancet Neurol, 2016, 15 (7): 695- 707.
doi: 10.1016/S1474-4422(16)00102-2
20 Matarín M , Brown WM , Scholz S , et al. A genome-wide genotyping study in patients with ischaemic stroke: Initial analysis and data release[J]. Lancet Neurol, 2007, 6 (5): 414- 420.
doi: 10.1016/S1474-4422(07)70081-9
21 Traylor M , Farrall M , Holliday EG , et al. Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE collaboration): A meta-analysis of genome-wide association studies[J]. Lancet Neurol, 2012, 11 (11): 951- 962.
doi: 10.1016/S1474-4422(12)70234-X
22 Dichgans M , Malik R , König IR , et al. Shared genetic susceptibility to ischemic stroke and coronary artery disease: A genome-wide analysis of common variants[J]. Stroke, 2014, 45 (1): 24- 36.
doi: 10.1161/STROKEAHA.113.002707
23 Smith JG , Melander O , Lövkvist H , et al. Common genetic variants on chromosome 9p21 confers risk of ischemic stroke: A large-scale genetic association study[J]. Circ Cardiovasc Genet, 2009, 2 (2): 159- 164.
doi: 10.1161/CIRCGENETICS.108.835173
24 Traylor M , Mäkelä KM , Kilarski LL , et al. A novel MMP12 locus is associated with large artery atherosclerotic stroke using a genome-wide age-at-onset informed approach[J]. PLoS Genet, 2014, 10 (7): e1004469.
doi: 10.1371/journal.pgen.1004469
25 Holliday EG , Maguire JM , Evans TJ , et al. Common variants at 6p21.1 are associated with large artery atherosclerotic stroke[J]. Nat Genet, 2012, 44 (10): 1147- 1151.
doi: 10.1038/ng.2397
26 Zhu R , Liu X , He Z , et al. miR-146a and miR-196a2 polymorphisms in patients with ischemic stroke in the northern Chinese Han population[J]. Neurochem Res, 2014, 39 (9): 1709- 1716.
doi: 10.1007/s11064-014-1364-5
27 Wan XH , Li SJ , Cheng P , et al. NINJ2 polymorphism is asso-ciated with ischemic stroke in Chinese Han population[J]. J Neurol Sci, 2011, 308 (1/2): 67- 71.
28 Liu ME , Liao YC , Lin RT , et al. A functional polymorphism of PON1 interferes with microRNA binding to increase the risk of ischemic stroke and carotid atherosclerosis[J]. Atherosclerosis, 2013, 228 (1): 161- 167.
doi: 10.1016/j.atherosclerosis.2013.01.036
29 Ding H , Xu Y , Bao X , et al. Confirmation of genomewide association signals in Chinese Han population reveals risk loci for ischemic stroke[J]. Stroke, 2010, 41 (1): 177- 180.
doi: 10.1161/STROKEAHA.109.567099
30 Domingues-Montanari S , Fernández-Cadenas I , Del Río-Espinola A , et al. KCNK17 genetic variants in ischemic stroke[J]. Atherosclerosis, 2010, 208 (1): 203- 209.
doi: 10.1016/j.atherosclerosis.2009.07.023
31 Zhu Y , Liu K , Tang X , et al. Association between NINJ2 gene polymorphisms and ischemic stroke: A family-based case-control study[J]. J Thromb Thrombolysis, 2014, 38 (4): 470- 476.
doi: 10.1007/s11239-014-1065-6
32 Loci associated with ischaemic stroke and its subtypes (SiGN): A genome-wide association study[J]. Lancet Neurol, 2016, 15(2): 174-184.
33 Ikram MA , Seshadri S , Bis JC , et al. Genomewide association studies of stroke[J]. N Engl J Med, 2009, 360 (17): 1718- 1728.
doi: 10.1056/NEJMoa0900094
34 Zhang Y , Tong Y , Zhang Y , et al. Two novel susceptibility SNPs for ischemic stroke using exome sequencing in Chinese Han population[J]. Mol Neurobiol, 2014, 49 (2): 852- 862.
doi: 10.1007/s12035-013-8561-0
35 Grandner MA , Buxton OM , Jackson N , et al. Extreme sleep durations and increased C-reactive protein: effects of sex and ethnoracial group[J]. Sleep, 2013, 36 (5): 769- 779e.
doi: 10.5665/sleep.2646
36 Ramos AR , Jin Z , Rundek T , et al. Relation between long sleep and left ventricular mass (from a multiethnic elderly cohort)[J]. Am J Cardiol, 2013, 112 (4): 599- 603.
doi: 10.1016/j.amjcard.2013.04.029
37 Abe T , Aoki T , Yata S , et al. Sleep duration is significantly associated with carotid artery atherosclerosis incidence in a Japanese population[J]. Atherosclerosis, 2011, 217 (2): 509- 513.
doi: 10.1016/j.atherosclerosis.2011.02.029
38 Doyle CY , Ruiz JM , Taylor DJ , et al. Associations between objective sleep and ambulatory blood pressure in a community sample[J]. Psychosom Med, 2019, 81 (6): 545- 556.
doi: 10.1097/PSY.0000000000000711
39 Lao XQ , Liu X , Deng HB , et al. Sleep quality, sleep duration, and the risk of coronary heart disease: A prospective cohort study with 60 586 adults[J]. J Clin Sleep Med, 2018, 14 (1): 109- 117.
doi: 10.5664/jcsm.6894
40 Massar SAA , Liu JCJ , Mohammad NB , et al. Poor habitual sleep efficiency is associated with increased cardiovascular and cortisol stress reactivity in men[J]. Psychoneuroendocrinology, 2017, 81, 151- 156.
doi: 10.1016/j.psyneuen.2017.04.013
41 Yang L , Chu Y , Wang L , et al. Overexpression of CRY1 protects against the development of atherosclerosis via the TLR/NF-κB pathway[J]. Int Immunopharmacol, 2015, 28 (1): 525- 530.
doi: 10.1016/j.intimp.2015.07.001
42 Roenneberg T , Kuehnle T , Juda M , et al. Epidemiology of the human circadian clock[J]. Sleep Med Rev, 2007, 11 (6): 429- 438.
doi: 10.1016/j.smrv.2007.07.005
43 Kirchhof P , Kahr PC , Kaese S , et al. PITX2c is expressed in the adult left atrium, and reducing Pitx2c expression promotes atrial fibrillation inducibility and complex changes in gene expression[J]. Circ Cardiovasc Genet, 2011, 4 (2): 123- 133.
doi: 10.1161/CIRCGENETICS.110.958058
44 Li H , Cai Y , Xu AD . Association study of polymorphisms in the ABO gene and their gene-gene interactions with ischemic stroke in Chinese population[J]. J Clin Lab Anal, 2018, 32 (4): e22329.
doi: 10.1002/jcla.22329
45 Sandford AJ , Ha A , Ngan DA , et al. Adhesion molecule gene variants and plasma protein levels in patients with suspected obstructive sleep apnea[J]. PLoS One, 2019, 14 (1): e0210732.
doi: 10.1371/journal.pone.0210732
[1] Xiang CAI,Rendong WANG,Shijia WANG,Ziqi REN,Qiuhong YU,Dongguo LI. Dynamic trajectory and cell communication of different cell clusters in malignant progression of glioblastoma [J]. Journal of Peking University (Health Sciences), 2024, 56(2): 199-206.
[2] Yujia MA,Ranli LU,Zechen ZHOU,Xiaoyi LI,Zeyu YAN,Yiqun WU,Dafang CHEN. Association between insomnia and type 2 diabetes: A two-sample Mendelian rando-mization study [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 174-178.
[3] Xue-heng WANG,Si-yue WANG,He-xiang PENG,Meng FAN,Huang-da GUO,Tian-jiao HOU,Meng-ying WANG,Yi-qun WU,Xue-ying QIN,Xun TANG,Jin LI,Da-fang CHEN,Yong-hua HU,Tao WU. Genotype-environment interaction on arterial stiffness: A pedigree-based study [J]. Journal of Peking University (Health Sciences), 2023, 55(3): 400-407.
[4] Huan YU,Ruo-tong YANG,Si-yue WANG,Jun-hui WU,Meng-ying WANG,Xue-ying QIN,Tao WU,Da-fang CHEN,Yi-qun WU,Yong-hua HU. Metformin use and risk of ischemic stroke in patients with type 2 diabetes: A cohort study [J]. Journal of Peking University (Health Sciences), 2023, 55(3): 456-464.
[5] Jia-hui DENG,Xiao-lin HUANG,Xiao-xing LIU,Jie SUN,Lin LU. The past, present and future of sleep medicine in China [J]. Journal of Peking University (Health Sciences), 2023, 55(3): 567-封三.
[6] Xi CHEN,Si-yue WANG,En-ci XUE,Xue-heng WANG,He-xiang PENG,Meng FAN,Meng-ying WANG,Yi-qun WU,Xue-ying QIN,Jing LI,Tao WU,Hong-ping ZHU,Jing LI,Zhi-bo ZHOU,Da-fang CHEN,Yong-hua HU. Exploring the association between de novo mutations and non-syndromic cleft lip with or without palate based on whole exome sequencing of case-parent trios [J]. Journal of Peking University (Health Sciences), 2022, 54(3): 387-393.
[7] ZHU Xiao-ling,LI Wen-jing,WANG Xian-e,SONG Wen-li,XU Li,ZHANG Li,FENG Xiang-hui,LU Rui-fang,SHI Dong,MENG Huan-xin. Gene polymorphisms of cytochrome B-245 alpha chain (CYBA) and cholesteryl ester transfer protein (CETP) and susceptibility to generalized aggressive periodontitis [J]. Journal of Peking University (Health Sciences), 2022, 54(1): 18-22.
[8] Yang HUO,Bing ZHOU,Hong-yan HE,Long ZHAO,Xue-li ZHANG,Jing LI,Yu-hua ZUO,Yu ZHENG,Zheng-hong REN,Fang HAN,Jun ZHANG. Comparison and correlation analysis of sleep parameters between watch-type sleep monitor (Actiwatch) and polysomnography [J]. Journal of Peking University (Health Sciences), 2021, 53(5): 942-945.
[9] ZHANG Shao-xing,YAO Zi-ming,LUAN Sheng,WANG Li,XU Ying. Detecting of obstructive sleep apnea hypopnea syndrome using a multi-parameter pressure sensitive sleep monitor [J]. Journal of Peking University (Health Sciences), 2021, 53(3): 608-612.
[10] Yi-fan WANG,Zhen FAN,Yao-bin CHENG,Yue-bo JIN,Yang HUO,Jing HE. Investigation of sleep disturbance and related factors in patients with primary Sjögren’s syndrome [J]. Journal of Peking University (Health Sciences), 2020, 52(6): 1063-1068.
[11] Hai-rong BAO,Xiao-ju LIU,En-li TAN,Juan SHU,Ji-yuan DONG,Sheng LI. Effects of temperature and relative humidity on the number of outpatients with chronic obstructive pulmonary disease and their interaction effect in Lanzhou, China [J]. Journal of Peking University (Health Sciences), 2020, 52(2): 308-316.
[12] Bing-wan DONG,Jun-bo ZHANG,Shui-fang XIAO. Predictive values of the combination of Friedman stage and sleep oximetry done early after surgery in predicting the treatment outcomes of uvulopalatopharyngoplasty [J]. Journal of Peking University (Health Sciences), 2020, 52(2): 281-284.
[13] Zi-chang JIA,Xuan LI,Xiao-gang LI,Xiang-zhu ZENG,Jing-yuan LUAN,Chang-ming WANG,Jin-tao HAN. Mechanical thrombectomy treatment in patients with acute ischemic stroke: a single center study [J]. Journal of Peking University(Health Sciences), 2019, 51(2): 256-259.
[14] Jiang XIE,Fei LI. Association of sleep overlap syndrome with type 2 diabetes in a cross-sectional study [J]. Journal of Peking University(Health Sciences), 2019, 51(2): 252-255.
[15] Shi-min WANG,Zheng LI,Guan-bo WANG,Hong-qiang YE,Yun-song LIU,Dai TONG,Wen-hui GAO,Yong-sheng ZHOU. Preliminary clinical application of complete digital workflow of design and manufacturing occlusal splint for sleep bruxism [J]. Journal of Peking University(Health Sciences), 2019, 51(1): 105-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!