Journal of Peking University (Health Sciences) ›› 2024, Vol. 56 ›› Issue (1): 4-8. doi: 10.19723/j.issn.1671-167X.2024.01.002
Previous Articles Next Articles
Han ZHAO1,Yan WEI2,Xuehui ZHANG3,Xiaoping YANG4,Qing CAI4,Chengyun NING5,Mingming XU2,Wenwen LIU2,Ying HUANG2,Ying HE2,Yaru GUO2,Shengjie JIANG2,Yunyang BAI2,Yujia WU2,Yusi GUO2,Xiaona ZHENG2,Wenjing LI2,Xuliang DENG2,*()
CLC Number:
1 | Addy M . Dentine hypersensitivity: New perspectives on an old problem[J]. Int Dent J, 2002, 52 (5 Suppl 2): 367- 375. |
2 | Gysi A . An attempt to explain the sensitiveness of dentine[J]. Br J Dent Sci, 1900, 43, 865- 868. |
3 | Brännström M , Aström A . The hydrodynamics of the dentine; its possible relationship to dentinal pain[J]. Int Dent J, 1972, 22 (2): 219- 227. |
4 |
Porto IC , Andrade AK , Montes MA . Diagnosis and treatment of dentinal hypersensitivity[J]. J Oral Sci, 2009, 51 (3): 323- 332.
doi: 10.2334/josnusd.51.323 |
5 | Chen N , Deng J , Jiang S , et al. The mechanism of dentine hypersensitivity: Stimuli-induced directional cation transport through dentinal tubules[J]. Nano Research, 2022, 16 (1): 991- 998. |
6 |
Gordon LM , Cohen MJ , MacRenaris KW , et al. Dental materials. Amorphous intergranular phases control the properties of rodent tooth enamel[J]. Science, 2015, 347 (6223): 746- 750.
doi: 10.1126/science.1258950 |
7 |
DeRocher KA , Smeets PJM , Goodge BH , et al. Chemical gra-dients in human enamel crystallites[J]. Nature, 2020, 583 (7814): 66- 71.
doi: 10.1038/s41586-020-2433-3 |
8 |
Wei Y , Liu S , Xiao Z , et al. Enamel repair with amorphous ceramics[J]. Adv Mater, 2020, 32 (7): e1907067.
doi: 10.1002/adma.201907067 |
9 |
Hou J , Xiao Z , Liu Z , et al. An amorphous peri-implant ligament with combined osteointegration and energy-dissipation[J]. Adv Mater, 2021, 33 (45): e2103727.
doi: 10.1002/adma.202103727 |
10 |
Vermeulen S , Tahmasebi Birgani Z , Habibovic P . Biomaterial-induced pathway modulation for bone regeneration[J]. Biomate-rials, 2022, 283, 121431.
doi: 10.1016/j.biomaterials.2022.121431 |
11 | Guo Y , Mei F , Huang Y , et al. Matrix stiffness modulates tip cell formation through the p-PXN-Rac1-YAP signaling axis[J]. Bioact Mater, 2021, 7, 364- 376. |
12 |
Liu WT , Wei Y , Zhang XH , et al. Lower extent but similar rhythm of osteogenic behavior in hBMSCs cultured on nanofibrous scaffolds versus induced with osteogenic supplement[J]. ACS Nano, 2013, 7 (8): 6928- 6938.
doi: 10.1021/nn402118s |
13 |
Lv Y , Huang Y , Xu M , et al. The miR-193a-3p-MAP3k3 signaling axis regulates substrate topography-induced osteogenesis of bone marrow stem cells[J]. Adv Sci (Weinh), 2020, 7 (1): 1901412.
doi: 10.1002/advs.201901412 |
14 |
Jiang S , Li H , Zeng Q , et al. The dynamic counterbalance of RAC1-YAP/OB-cadherin coordinates tissue spreading with stem cell fate patterning[J]. Adv Sci (Weinh), 2021, 8 (10): 2004000.
doi: 10.1002/advs.202004000 |
15 |
Wei Y , Jiang S , Si M , et al. Chirality controls mesenchymal stem cell lineage diversification through mechanoresponses[J]. Adv Mater, 2019, 31 (16): e1900582.
doi: 10.1002/adma.201900582 |
16 | Jiang S , Zeng Q , Zhao K , et al. Chirality bias tissue homeostasis by manipulating immunological response[J]. Adv Mater, 2021, 34 (2): e2105136. |
17 |
Liu Y , Zhang X , Cao C , et al. Built-in electric fields dramatically induce enhancement of osseointegration[J]. Adv Funct Mater, 2017, 27 (47): 1703771.
doi: 10.1002/adfm.201703771 |
18 |
Zhang X , Zhang C , Lin Y , et al. Nanocomposite membranes enhance bone regeneration through restoring physiological electric microenvironment[J]. ACS Nano, 2016, 10 (8): 7279- 7286.
doi: 10.1021/acsnano.6b02247 |
19 | Wei Y , Zhang X , Song Y , et al. Magnetic biodegradable Fe3O4/CS/PVA nanofibrous membranes for bone regeneration[J]. Biomed Mater, 2021, 6 (5): 055008. |
20 | Liu W , Zhang F , Yan Y , et al. Remote tuning of built-in magnetoelectric microenvironment to promote bone regeneration by modulating cellular exposure to arginylglycylaspartic acid peptide[J]. Adv Funct Mater, 2020, 31 (6): 2006226. |
21 |
Liu W , Zhao H , Zhang C , et al. In situ activation of flexible magnetoelectric membrane enhances bone defect repair[J]. Nat Commun, 2023, 14 (1): 4091.
doi: 10.1038/s41467-023-39744-3 |
22 |
Dai X , Heng BC , Bai Y , et al. Restoration of electrical micro-environment enhances bone regeneration under diabetic conditions by modulating macrophage polarization[J]. Bioactive materials, 2021, 6 (7): 2029- 2038.
doi: 10.1016/j.bioactmat.2020.12.020 |
23 |
Zhao H , Liu S , Wei Y , et al. Multiscale engineered artificial tooth enamel[J]. Science, 2022, 375 (6580): 551- 556.
doi: 10.1126/science.abj3343 |
24 |
Zhou Y , Deng J , Zhang Y , et al. Engineering DNA-guided hydroxyapatite bulk materials with high stiffness and outstanding antimicrobial ability for dental inlay applications[J]. Adv Mater, 2022, 34 (27): e2202180.
doi: 10.1002/adma.202202180 |
25 |
Chen K , Tang X , Jia B , et al. Graphene oxide bulk material reinforced by heterophase platelets with multiscale interface crosslinking[J]. Nat Mater, 2022, 21 (10): 1121- 1129.
doi: 10.1038/s41563-022-01292-4 |
26 | Lin S , Cai Q , Ji J , et al. Electrospun nanofiber reinforced and toughened composites through in situ nano-interface formation[J]. Compos Sci Technol, 2008, 68 (15): 3322- 3329. |
27 | Zhang S , Huang Y , Yang X , et al. Gelatin nanofibrous membrane fabricated by electrospinning of aqueous gelatin solution for guided tissue regeneration[J]. J Biomed Mater Res A, 2009, 90 (3): 671- 679. |
28 |
Zhang X , Cai Q , Liu H , et al. Calcium ion release and osteoblastic behavior of gelatin/beta-tricalcium phosphate composite nanofibers fabricated by electrospinning[J]. Mater Letters, 2012, 73, 172- 175.
doi: 10.1016/j.matlet.2012.01.049 |
29 |
Zhang C , Liu W , Cao C , et al. Modulating surface potential by controlling the β phase content in poly(vinylidene fluoridetrifluoroethylene) membranes enhances bone regeneration[J]. Adv Healthc Mater, 2018, 7 (11): e1701466.
doi: 10.1002/adhm.201701466 |
30 |
Bai Y , Zheng X , Zhong X , et al. Manipulation of heterogeneous surface electric potential promotes osteogenesis by strengthening RGD peptide binding and cellular mechanosensing[J]. Advanced Materials, 2023, 35 (24): e2209769.
doi: 10.1002/adma.202209769 |
31 |
Wei Y , Mo X , Zhang P , et al. Directing stem cell differentiation via electrochemical reversible switching between nanotubes and nanotips of polypyrrole array[J]. ACS Nano, 2017, 11 (6): 5915- 5924.
doi: 10.1021/acsnano.7b01661 |
[1] | Shuang REN, Huijuan SHI, Zixuan LIANG, Si ZHANG, Xiaoqing HU, Hongshi HUANG, Yingfang AO. Biomechanics during cutting movement in individuals after anterior cruciate ligament reconstruction [J]. Journal of Peking University (Health Sciences), 2024, 56(5): 868-873. |
[2] | Yuan WU,Xiao-li LI,Song-lin YANG,Xiao-ming YAN,Hai-li LI. Examination and discriminant analysis of corneal biomechanics with CorVis ST in keratoconus and subclinical keratoconus [J]. Journal of Peking University(Health Sciences), 2019, 51(5): 881-886. |
[3] | Chao WU,Zhen-yu WANG,Guo-zhong LIN,Tao YU,Bin LIU,Yu SI,Yi-bo ZHANG,Yuan-chao LI. Biomechanical changes of sheep cervical spine after unilateral hemilaminectomy and different degrees of facetectomy [J]. Journal of Peking University(Health Sciences), 2019, 51(4): 728-732. |
[4] | RONG Yan-bo, TIAN Guang-lei, CHEN Shan-lin. Biomechanical analysis of the deep radioulnar ligaments stabilizing the distal radioulnar joint [J]. Journal of Peking University(Health Sciences), 2017, 49(3): 518-521. |
|