北京大学学报(医学版) ›› 2025, Vol. 57 ›› Issue (1): 13-18. doi: 10.19723/j.issn.1671-167X.2025.01.003

• 论著 • 上一篇    下一篇

RELT基因移码突变导致遗传性釉质发育不全

张真伟1,2, 徐欣然1, 高学军1, 董艳梅1, 田华1,3,*()   

  1. 1. 北京大学口腔医学院·口腔医院牙体牙髓科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,北京 100081
    2. 复旦大学附属上海市口腔医院牙体牙髓二科,上海市颅颌面发育与疾病重点实验室,上海 200001
    3. 北京大学口腔医学院·口腔医院国际门诊部,北京 100081
  • 收稿日期:2024-09-27 出版日期:2025-02-18 发布日期:2025-01-25
  • 通讯作者: 田华 E-mail:hua_tian@bjmu.edu.cn
  • 基金资助:
    国家自然科学基金(81300839);北大医学交叉研究种子基金(BMU2022MX019);国家重大疾病多学科合作诊疗能力建设项目北京大学口腔医院牙体牙髓科子课题(PKUSSNMP-201906)

Frameshift mutation in RELT gene causes amelogenesis imperfecta

Zhenwei ZHANG1,2, Xinran XU1, Xuejun GAO1, Yanmei DONG1, Hua TIAN1,3,*()   

  1. 1. Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
    2. Department of Conservative Dentistry and Endodontics 2, Shanghai Stomatological Hospital & School of Stomatology; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
    3. International Clinical Division, Peking University School and Hospital of Stomatology, Beijing 100081, China
  • Received:2024-09-27 Online:2025-02-18 Published:2025-01-25
  • Contact: Hua TIAN E-mail:hua_tian@bjmu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(81300839);Peking University Medicine Seed Fund for Interdisciplinary Research(BMU2022MX019);National Multidisciplinary Cooperative Diagnosis and Treatment Capacity Building Project for Major Diseases, Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology(PKUSSNMP-201906)

RICH HTML

  

摘要:

目的: 纳入1例临床特征和遗传方式符合遗传性釉质发育不全的患者家系,在中国人群中发现RELT基因突变与遗传性釉质发育不全相关,分析其突变效应,探究基因型与表型的关系。方法: 收集患者及家系成员的临床资料,分析其临床表型;采集家系成员的外周静脉血等生物样本,提取基因组DNA,进行全外显子组测序(whole-exome sequencing, WES),分析其致病基因,采用Sanger测序验证。利用SIFT、PolyPhen-2等网站预测突变的致病性;利用Uniprot网站对比不同物种的蛋白序列,分析蛋白保守性; 利用Alphafold 2等生物信息学软件分析突变蛋白在三维结构等方面的改变。结果: 先证者表现为典型的钙化不全型遗传性釉质发育不全,磨耗重,釉质较软,表面粗糙着色,部分釉质丧失,其他家系成员不具有类似的口腔表现。WES和Sanger测序结果表明该先证者携带RELT基因的纯合移码突变,即NM_032871.3: c.1169_1170del,其父母均为携带者,该突变被预测为能致病。生物信息学分析结果显示,该突变位点在不同物种间高度保守。蛋白三维结构预测显示,与野生型RELT蛋白相比,突变蛋白p.Pro390fs35构象提前终止,影响该蛋白正常功能。结论: 通过对一个遗传性釉质发育不全家系进行表型分析、基因测序及功能预测等,发现RELT基因的纯合移码突变可造成蛋白结构异常,导致钙化不全型遗传性釉质发育不全。

关键词: 遗传性釉质发育不全, RELT基因, 移码突变, 釉质矿化

Abstract:

Objective: To analyze RELT gene mutation found in a pedigree with clinical features and inheritable pattern consistent with amelogenesis imperfecta (AI) in China, and to study the relationship between its genotype and phenotype. Methods: Clinical and radiological features were recorded for the affected individuals. Peripheral venous blood samples of the patient and family members were collected for further study, and the genomic DNA was extracted to identify the pathogenic gene. Whole exome sequencing (WES) was performed to analyze the possible pathogenic genes, and Sanger sequencing was performed for validation. SIFT and PolyPhen-2 were used to predict and analyze the mutation effect. Comparison of RELT amino acids across different species were performed by using Uniprot website. In addition, the three-dimen-sional structures of the wild type and mutant proteins were predicted by Alphafold 2. Results: The proband exhibited typical hypocalcified AI, with heavy wear, soft enamel, rough and discolored surface, and partial enamel loss, while his parents didn ' t have similar manifestations. WES and Sanger sequencing results indicated that the proband carries a homozygous frameshift mutation in RELT gene, NM_032871.3: c.1169_1170del, and both of his parents were carriers. This mutation was predicted to be pathogenic by SIFT and PolyPhen-2. Up to now, there were 11 mutation sites in RELT gene were reported to be associated with AI, and all of the patients exhibited with hypocalcified AI. Compared with the wild-type RELT protein, the mutant protein p. Pro390fs35 conformation terminated prematurely, affecting the normal function of the protein. Conclusion: Through phenotype analysis, gene sequencing, and functional prediction of a Chinese family with typical amelogenesis imperfecta, this study found that RELT gene frameshift mutation can lead to protein dysfunction in AI patients. Further research will focus on the role and mechanism of RELT in enamel development at the molecular and animal levels, providing molecular biology evidence for the genetic counseling, prenatal diagnosis, and early prevention and treatment of AI.

Key words: Amelogenesis imperfecta, RELT gene, Frameshift mutation, Enamel mineralization

中图分类号: 

  • R781.2

图1

先证者家系图谱和家系临床表现"

图2

先证者及家系成员Sanger测序峰图"

图3

RELT蛋白保守性分析及三维结构"

表1

导致AI的RELT基因突变位点及临床表现"

LocationcDNAaClinical featuresReferences
Intron 3c.120+1G>AHypomineralized and rough enamel, with attrition of occlusal surfaces[16]
Intron 3c.120+1G>THypomineralized yellow-brown enamel, with attrition of occlusal surfaces and localized pitted hypoplastic enamel[16]
Intron 3c.121-2A>GRough hypoplastic enamel, attrition of occlusal surfaces with ring of thin enamel covering lateral surfaces of the crown[17]
Exon 4c.164C>THypomineralized, normal enamel thickness, post-eruptive loss[24]
Exon 4 Exon11c.193T>C
c.1260_1263dup
Rough and hypomineralized enamel with pits localized in the middle of crown[16]
Exon 4 Exon 6c.260A>T
c.521T>G
Severe enamel hypoplasia affecting both primary molars and permanent teeth, loss of normal crown morphology[25]b
Exon 10c.1169_1170delRough and hypomineralized enamel, attrition of occlusal surfacesThis study and[17]
Exon 11c.1264C>TRough enamel, normal enamel thickness[24]
Exon 11c.1265G>CSevere generalized enamel attrition[17]
1 Thesleff I . Epithelial-mesenchymal signalling regulating tooth morphogenesis[J]. J Cell Sci, 2003, 116 (9): 1647- 1648.
doi: 10.1242/jcs.00410
2 Aldred MJ , Savarirayan R , Crawford PJM . Amelogenesis imperfecta: A classification and catalogue for the 21st century[J]. Oral Dis, 2003, 9 (1): 19- 23.
doi: 10.1034/j.1601-0825.2003.00843.x
3 Stephanopoulos G , Garefalaki ME , Lyroudia K . Genes and related proteins involved in amelogenesis imperfecta[J]. J Dent Res, 2005, 84 (12): 1117- 1126.
doi: 10.1177/154405910508401206
4 段小红, 代表中华口腔医学会口腔遗传病与罕见病专业委员会. 口腔罕见病名录(第一版)[J]. 中华口腔医学杂志, 2020, 55 (7): 494- 500.
doi: 10.3760/cma.j.cn112144-20200226-00092
5 Crawford PJM , Aldred M , Bloch-Zupan A . Amelogenesis imperfecta[J]. Orphanet J Rare Dis, 2007, 2 (1): 1- 11.
doi: 10.1186/1750-1172-2-1
6 Dong J , Ruan W , Duan X . Molecular-based phenotype variations in amelogenesis imperfecta[J]. Oral Dis, 2023, 29 (6): 2334- 2365.
doi: 10.1111/odi.14599
7 Gil-Bona A , Bidlack FB . Tooth enamel and its dynamic protein matrix[J]. Int J Mol Sci, 2020, 21 (12): 1- 25.
8 Hu JCC , Chun YHP , Al Hazzazzi T , et al. Enamel formation and amelogenesis imperfecta[J]. Cells Tissues Organs, 2007, 186 (1): 78- 85.
doi: 10.1159/000102683
9 Smith CEL , Poulter JA , Antanaviciute A , et al. Amelogenesis imperfecta; genes, proteins, and pathways[J]. Front Physiol, 2017, 8, 435.
doi: 10.3389/fphys.2017.00435
10 Zhang Z , Zou X , Feng L , et al. Splicing mutations in AMELX and ENAM cause amelogenesis imperfecta[J]. BMC Oral Health, 2023, 23 (1): 1- 10.
doi: 10.1186/s12903-022-02698-x
11 Dong C , Lamichhane B , Yamazaki H , et al. The phosphorylation of serine55 in enamelin is essential for murine amelogenesis[J]. Matrix Biol, 2022, 111 (8): 245- 263.
12 Hu JCC , Hu Y , Smith CE , et al. Enamel defects and ameloblast-specific expression in Enam knock-out/lacZ knock-in mice[J]. J Biol Chem, 2008, 283 (16): 10858- 10871.
doi: 10.1074/jbc.M710565200
13 Barron MJ , Brookes SJ , Kirkham J , et al. A mutation in the mouse Amelx tri-tyrosyl domain results in impaired secretion of amelogenin and phenocopies human X-linked amelogenesis imperfecta[J]. Hum Mol Genet, 2010, 19 (7): 1230- 1247.
doi: 10.1093/hmg/ddq001
14 宋亚玲, 边专. 基因突变与牙体硬组织发育异常[J]. 中华口腔医学杂志, 2020, 55 (5): 12- 26.
15 Sica GL , Zhu G , Tamada K , et al. RELT, a new member of the tumor necrosis factor receptor superfamily, is selectively expressed in hematopoietic tissues and activates transcription factor NF-κB[J]. Blood, 2001, 97 (9): 2702- 2707.
doi: 10.1182/blood.V97.9.2702
16 Resende KKM , Riou MC , Yamaguti PM , et al. Oro-dental phenotyping and report of three families with RELT-associated amelo-genesis imperfecta[J]. Eur J Hum Genet, 2023, 31 (11): 1337- 1341.
doi: 10.1038/s41431-023-01440-7
17 Kim JW , Zhang H , Seymen F , et al. Mutations in RELT cause autosomal recessive amelogenesis imperfecta[J]. Clin Genet, 2019, 95 (3): 375- 383.
doi: 10.1111/cge.13487
18 Cusick JK , Mustian A , Goldberg K , et al. RELT induces cellular death in HEK 293 epithelial cells[J]. Cell Immunol, 2010, 261 (1): 1- 8.
doi: 10.1016/j.cellimm.2009.10.013
19 Moua P , Checketts M , Xu LG , et al. RELT family members activate p38 and induce apoptosis by a mechanism distinct from TNFR1[J]. Biochem Biophys Res Commun, 2017, 491 (1): 25- 32.
doi: 10.1016/j.bbrc.2017.07.022
20 Shahid S , Ikeda A , Layana MC , et al. ADAM10: Possible functions in enamel development[J]. Front Physiol, 2022, 13, 1032383.
doi: 10.3389/fphys.2022.1032383
21 Yu S , Zhang C , Zhu C , et al. A novel ENAM mutation causes hypoplastic amelogenesis imperfecta[J]. Oral Dis, 2022, 28 (6): 1610- 1619.
doi: 10.1111/odi.13877
22 Kim YJ , Kang J , Seymen F , et al. Alteration of exon definition causes amelogenesis imperfecta[J]. J Dent Res, 2020, 99 (4): 410- 418.
doi: 10.1177/0022034520901708
23 Kim YJ , Zhang H , Lee Y , et al. Novel WDR72 mutations causing hypomaturation amelogenesis imperfecta[J]. J Pers Med, 2023, 13 (2): 326.
doi: 10.3390/jpm13020326
24 Nikolopoulos G , Smith CEL , Brookes SJ , et al. New missense variants in RELT causing hypomineralised amelogenesis imperfecta[J]. Clin Genet, 2020, 97 (5): 688- 695.
doi: 10.1111/cge.13721
25 Yang Y , Qin M , Zhao Y , et al. Digenic inheritance accounts for phenotypic variability in amelogenesis imperfecta[J]. Clin Genet, 2024, 105 (3): 243- 253.
doi: 10.1111/cge.14449
26 Kim YJ , Kim YJ , Kang J , et al. A novel AMELX mutation causes hypoplastic amelogenesis imperfecta[J]. Arch Oral Biol, 2017, 76 (4): 61- 65.
27 Liang T , Hu Y , Smith CE , et al. AMBN mutations causing hypoplastic amelogenesis imperfecta and Ambn knockout-NLS-lacZ knockin mice exhibiting failed amelogenesis and Ambn tissue-specificity[J]. Mol Genet Genomic Med, 2019, 7 (9): 1- 20.
28 Wang X , Zhao Y , Yang Y , et al. Novel ENAM and LAMB3 mutations in Chinese families with hypoplastic amelogenesis imperfecta[J]. PLoS One, 2015, 10 (3): 1- 10.
29 Bai RQ , He W Bin , Peng Q , et al. A novel FAM83H variant causes familial amelogenesis imperfecta with incomplete penetrance[J]. Mol Genet Genomic Med, 2022, 10 (4): 1- 7.
30 Baralle FE , Giudice J . Alternative splicing as a regulator of deve-lopment and tissue identity[J]. Nat Publ Gr, 2017, 18 (7): 437- 451.
31 Ikeda A , Shahid S , Blumberg BR , et al. ADAM10 is expressed by ameloblasts, cleaves the RELT TNF receptor extracellular domain and facilitates enamel development[J]. Sci Rep, 2019, 9 (1): 14086.
doi: 10.1038/s41598-019-50277-y
32 Weber S , Niessen MT , Prox J , et al. The disintegrin/metalloproteinase Adam10 is essential for epidermal integrity and Notch-mediated signaling[J]. Development, 2011, 138 (3): 495- 505.
doi: 10.1242/dev.055210
[1] 孙翔宇, 袁超, 丁鹏, 刘磊, 荣文笙, 郑树国, 徐韬, 司燕. 不同氟制剂预防正畸治疗中釉质脱矿的临床评价[J]. 北京大学学报(医学版), 2015, 47(4): 724-727.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!