北京大学学报(医学版) ›› 2025, Vol. 57 ›› Issue (1): 192-201. doi: 10.19723/j.issn.1671-167X.2025.01.029
方媛媛1, 徐帆2, 雷杰1, 张昊2, 张文宇2, 孙宇2, 吴宏新2, 傅开元1,*(), 毛伟玉1,*()
Yuanyuan FANG1, Fan XU2, Jie LEI1, Hao ZHANG2, Wenyu ZHANG2, Yu SUN2, Hongxin WU2, Kaiyuan FU1,*(), Weiyu MAO1,*()
摘要:
目的: 拟建立基于颞下颌关节紊乱病诊断标准(diagnostic criteria for temporomandibular disorders,DC/TMD)的颞下颌关节紊乱病(temporomandibular disorders,TMD)临床自动诊断系统,以帮助口腔医师快速且准确地做出TMD的临床诊断。方法: 回顾性收集2023年9月至2024年1月就诊于北京大学口腔医院颞下颌关节病口颌面疼痛诊治中心的354例患者临床及影像学资料。基于DC/TMD,采用. NET Framework平台开发并以分支语句作为内部构架搭建TMD临床自动诊断系统,并验证该系统与DC/TMD的符合率。对于退行性关节病、可复性关节盘移位、不可复性关节盘移位伴开口受限、不可复性关节盘移位无开口受限,以影像学检查并结合临床最大主动开口度作为金标准,评估该系统对这4种疾病的诊断效能并与专家诊断结果相比较。结果: TMD临床自动诊断系统诊断TMD各亚型疾病的结果(包括疼痛类疾病和关节类疾病)与专科医师采用DC/TMD所得诊断结果符合率均为100%。TMD临床自动诊断系统及专家对于退行性关节病的诊断灵敏度较低,分别为0.24和0.37,而特异度均高达0.96。两种方法对于可复性关节盘移位和不可复性关节盘移位伴开口受限的诊断准确度均达到0.9以上;TMD临床自动诊断系统对于不可复性关节盘移位无开口受限的诊断灵敏度为0.59, 相对专家(0.87)较低,但特异度两者均较高(0.92)。TMD临床自动诊断系统对于大部分TMD亚型的诊断结果与专家诊断结果的Kappa值接近1,仅不可复性关节盘移位无开口受限的Kappa值为0.68。结论: 本研究开发并验证评估了一种基于DC/TMD的TMD临床自动诊断系统,该系统可以帮助口腔医师快速、准确诊断并分类TMD,有望成为辅助TMD诊断的重要工具。
中图分类号:
1 |
Iturriaga V , Bornhardt T , Velasquez N . Temporomandibular joint: Review of anatomy and clinical implications[J]. Dent Clin North Am, 2023, 67 (2): 199- 209.
doi: 10.1016/j.cden.2022.11.003 |
2 |
Valesan LF , Da-Cas CD , Réus JC , et al. Prevalence of temporomandibular joint disorders: A systematic review and meta-analysis[J]. Clin Oral Investig, 2021, 25 (2): 441- 453.
doi: 10.1007/s00784-020-03710-w |
3 |
Cao Y , Yap AU , Lei J , et al. Oral health-related quality of life of patients with acute and chronic temporomandibular disorder diagnostic subtypes[J]. J Am Dent Assoc, 2022, 153 (1): 50- 58.
doi: 10.1016/j.adaj.2021.07.011 |
4 |
Jung HD , Kim SY , Park HS , et al. Orthognathic surgery and temporomandibular joint symptoms[J]. Maxillofac Plast Reconstr Surg, 2015, 37 (1): 14.
doi: 10.1186/s40902-015-0014-4 |
5 | Michelotti A , Rongo R , D'antò V , et al. Occlusion, orthodontics, and temporomandibular disorders: Cutting edge of the current evidence[J]. J World Fed Orthod, 2020, 9 (Suppl 3): S15- S18. |
6 |
Din NMU , Dar RA , Rasool M , et al. Breast cancer detection using deep learning: Datasets, methods, and challenges ahead[J]. Comput Biol Med, 2022, 149, 106073.
doi: 10.1016/j.compbiomed.2022.106073 |
7 | Chan HP , Hadjiiski LM , Samala RK . Computer-aided diagnosis in the era of deep learning[J]. Med Phys, 2020, 47 (5): e218- e227. |
8 |
Wu S , Roberts K , Datta S , et al. Deep learning in clinical natural language processing: A methodical review[J]. J Am Med Inform Assoc, 2020, 27 (3): 457- 470.
doi: 10.1093/jamia/ocz200 |
9 | 邵毅, 张铭志, 许言午, 等. 人工智能在视网膜图像自动分割和疾病诊断中的应用指南(2024)[J]. 眼科新进展, 2024, 44 (8): 592- 601. |
10 | 魏世成, 王翰章. 颞颌关节紊乱综合征专家系统的设计与实现[J]. 华西口腔医学杂志, 1990, (3): 216- 220. |
11 |
Schiffman E , Ohrbach R , Truelove E , et al. Diagnostic criteria for temporomandibular disorders (DC/TMD) for clinical and research applications: Recommendations of the International RDC/TMD Consortium Network* and Orofacial Pain Special Interest Group†[J]. J Oral Facial Pain Headache, 2014, 28 (1): 6- 27.
doi: 10.11607/jop.1151 |
12 |
傅开元. 2014年新版国际颞下颌关节紊乱病分类及诊断标准解读[J]. 中华口腔医学杂志, 2017, 52 (6): 374- 376.
doi: 10.3760/cma.j.issn.1002-0098.2017.06.010 |
13 |
Minervini G , Marrapodi MM , Siurkel Y , et al. Accuracy of temporomandibular disorders diagnosis evaluated through the diagnostic criteria for temporomandibular disorder (DC/TDM) axis Ⅱ compared to the axis Ⅰ evaluations: A systematic review and meta-analysis[J]. BMC Oral Health, 2024, 24 (1): 299.
doi: 10.1186/s12903-024-03983-7 |
14 | 傅开元, 雷杰. 颞下颌关节紊乱病的分类、诊断及治疗进展[J]. 口腔医学, 2024, 44 (1): 6- 10. |
15 |
Zhang XL , Sun JL , He DM . Review of the studies on the relationship and treatment of anterior disk displacement and dentofacial deformity in adolescents[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2023, 135 (4): 470- 474.
doi: 10.1016/j.oooo.2022.07.018 |
16 |
Bas B , Ozgonenel O , Ozden B , et al. Use of artificial neural network in differentiation of subgroups of temporomandibular internal derangements: A preliminary study[J]. J Oral Maxillofac Surg, 2012, 70 (1): 51- 59.
doi: 10.1016/j.joms.2011.03.069 |
17 |
Tașkıran U , Çunkaș M . A deep learning based decision support system for diagnosis of temporomandibular joint disorder[J]. Applied Acoustics, 2021, 182, 108292.
doi: 10.1016/j.apacoust.2021.108292 |
18 | Sharma N, Dar IG, Kumar J, et al. Temporomandibular joint syndrome prediction using neural network[C]/ /Ray K, Sharan SN, Rawat S, et al. Proceedings of the Engineering Vibration, Communication and Information Processing: ICoEVCI 2018, India. Singapore: Springer, 2019: 1-8. |
19 |
Yap AU , Lei J , Zhang XH , et al. TMJ degenerative joint disease: Relationships between CBCT findings, clinical symptoms, and signs[J]. Acta Odontol Scand, 2023, 81 (7): 562- 568.
doi: 10.1080/00016357.2023.2215317 |
20 |
Patel A , Tee BC , Fields H , et al. Evaluation of cone-beam computed tomography in the diagnosis of simulated small osseous defects in the mandibular condyle[J]. Am J Orthod Dentofacial Orthop, 2014, 145 (2): 143- 156.
doi: 10.1016/j.ajodo.2013.10.014 |
21 |
Yadav S , Palo L , Mahdian M , et al. Diagnostic accuracy of 2 cone-beam computed tomography protocols for detecting arthritic changes in temporomandibular joints[J]. Am J Orthod Dentofacial Orthop, 2015, 147 (3): 339- 344.
doi: 10.1016/j.ajodo.2014.11.017 |
22 |
Lee KS , Kwak HJ , Oh JM , et al. Automated detection of TMJ osteoarthritis based on artificial intelligence[J]. J Dent Res, 2020, 99 (12): 1363- 1367.
doi: 10.1177/0022034520936950 |
23 | Choi E , Kim D , Lee JY , et al. Artificial intelligence in detecting temporomandibular joint osteoarthritis on orthopantomogram[J]. Sci Rep, 2021, 11 (1): 10246. |
[1] | 曹瑞洁,姚中强,焦朋清,崔立刚. 不同分类标准对中国大动脉炎的诊断效能比较[J]. 北京大学学报(医学版), 2022, 54(6): 1128-1133. |
[2] | 王鹏,吴华,车颖,范东伟,刘珏,陶立元. 亚洲骨质疏松筛查工具在健康体检中的筛查准确性评价及适宜切点研究[J]. 北京大学学报(医学版), 2019, 51(6): 1085-1090. |
[3] | 徐筱,徐莉,江久汇,吴佳琪,李小彤,靖无迪. 锥形束CT评判安氏Ⅲ类错牙合上前牙骨开裂与骨开窗的准确性分析[J]. 北京大学学报(医学版), 2018, 50(1): 104-109. |
[4] | 魏攀, 卢松鹤, 付静雅, 闫志敏, 华红. 原发性干燥综合征2012年美国风湿病学会分类标准的临床验证[J]. 北京大学学报(医学版), 2014, 46(2): 306-310. |
[5] | 程琳, 李杰, 刘淼, 王殊, 蒋宏传, 杨德启. 多中心前瞻性对比动态光学乳腺成像与乳腺钼靶对乳腺癌诊断的灵敏度、特异度和安全性研究[J]. 北京大学学报(医学版), 2011, 43(3): 467-471. |
[6] | 马彦*, 乔建军, 刘伟, 李若瑜. 烟曲霉sho1基因对渗透压传导的作用和抗真菌药物敏感性的影响[J]. 北京大学学报(医学版), 2009, 41(2): 162-167. |
[7] | 李建平, 梁金峰, 邱建星, 陈大方, 霍勇. 64层螺旋CT对稳定型心绞痛及急性冠状动脉综合征患者冠状动脉病变的诊断价值[J]. 北京大学学报(医学版), 2007, 39(6): 645-648. |
|