目的:在中国北方农村人群的前瞻性队列中,评估不同的心血管病筛查策略可获得的健康收益。方法:研究对象为6 221名基线未患心血管病的40~74岁北京房山农村人群。本研究比较的筛查策略包括:策略1,在40~74岁人群中采用《中国心血管病预防指南(2017)》推荐的筛查策略;策略2,采用中国动脉粥样硬化性心血管病风险预测研究(prediction for atherosclerotic cardiovascular disease risk in China,ChinaPAR)风险评估模型的定量筛查策略在40~74岁人群中进行筛查;策略3,采用ChinaPAR定量评估后在50~74岁人群中进行筛查。利用马尔科夫模型模拟将该人群根据上述不同的筛查策略进行心血管病危险分层,并根据指南中的推荐,对中危及以上人群采用生活方式干预,对高危人群额外进行药物治疗干预。比较不同筛查策略的健康收益,包括增额质量调整生命年(qualityadjusted life year,QALY)、可预防的心血管病发病和死亡例数、每增加1个QALY(每预防1例心血管病发病或死亡)需筛查人数等。模型所需参数来源于本队列研究、公开发表的中国人群研究数据、Meta分析和系统综述。针对一般人群心血管病发病率的不确定性进行单因素敏感性分析,并针对风险比参数的不确定性进行概率敏感性分析。结果:与不筛查相比,采用策略1、2、3产生的增额QALY分别为498年(95%CI:103~894)、691年(95%CI:233~1 149)和654年(95%CI:199~1 108),可预防的心血管病发病例数分别为298例(95%CI:155~441)、374例(95%CI:181~567)和346例(95%CI:154~538)。同时,采用ChinaPAR定量评估的策略(策略2和策略3)较《中国心血管病预防指南(2017)》策略有显著的增额QALY(P<0.05),可预防更多的心血管病发病和死亡(P<0.05),且需筛查人数较少(策略3筛查50~74岁人群,3个指标P均<0.05;策略2筛查40~74岁人群,预防1例心血管病死亡需筛查人数这一指标P<0.05)。采用ChinaPAR定量的筛查策略在40~74岁人群和50~74岁人群筛查的健康收益相似。单因素敏感性分析和概率敏感性分析的结果与主要分析结果一致。结论:在北方农村人群中开展心血管病一级预防的筛查及干预是必要的,基于ChinaPAR定量筛查的策略较《中国心血管病预防指南(2017)》推荐的筛查策略获得的健康收益更高,50岁起利用ChinaPAR进行心血管病筛查较40岁起进行筛查可以减少筛查人数,获得相似的健康收益,适用于经济不发达地区开展筛查项目。
司亚琴
,
唐迅
,
张杜丹
,
何柳
,
曹洋
,
王晋伟
,
李娜
,
刘建江
,
高培
,
胡永华
. 北方农村人群心血管病一级预防筛查策略的评价[J]. 北京大学学报(医学版), 2018
, 50(3)
: 443
-449
.
DOI: 10.3969/j.issn.1671-167X.2018.03.009
Objective: To estimate the potential health benefit of screening strategies for cardiovascular diseases primary prevention in a rural northern Chinese population. Methods: A total of 6 221 adults aged 40-74 years old, from rural Beijing, China and free from cardiovascular diseases at baseline were included. The following screening strategies were compared: Strategy 1, the strategy based on numbers of risk factors recommended by the Chinese Guideline for Prevention of Cardiovascular Diseases in people aged 40-74; Strategy 2, screening people aged 40-74 based on the Prediction for Atherosclerotic Cardiovascular Disease Risk in China (China-PAR) risk prediction model; Strategy 3, screening people aged 50-74 using the China-PAR risk prediction model. Participates who were classified into medium- or highrisk by the correspond-ing strategies would be introduced to lifestyle intervention, while high risk population would take medi-cation in addition. Markov model was used to compare the potential health benefits within 10 years in each scenario, which applied the parameters from this rural northern Chinese cohort, published literatures, meta-analyses and systematic reviews, clinical trials and other cohort stu-dies of Chinese population. Quality-adjusted life year (QALY) gained, cardiovascular diseases (CVD) events/deaths could be prevented and number needed to be screened (NNS) per QALY gained/per CVD event prevented/per CVD death prevented were calculated to compare the effectiveness. One-way sensitivity analysis concerning uncertainty of cardiovascular disease incidence rate and probabilistic sensitivity analysis about the uncertainty of hazard ratios were conducted. Results: Compared with non-screening strategy, the potential health benefits of each strategy were: Strategy 1 would gain QALY of 498 (95%CI: 103-894) and prevent 298 (95%CI: 155-441) CVD events; Strategy 2 would gain QALY of 691 (95%CI: 233-1 149) and prevent CVD events of 374 (95%CI: 181-567); Strategy 3 would gain QALY of 654 (95%CI: 199-1 108) and prevent CVD events of 346 (95%CI: 154-538). Screening strategy based on China-PAR risk prediction model (strategy 2 or 3) would be generally better in terms of QALY gained, CVD events/deaths prevented and NNS than the strategy based on numbers of CVD risk factors (all P<0.05 except NNS per QALY gained and NNS per CVD event prevented in 40-74 years). Similar benefits were obtained for the strategy 2 and 3. The results were consistent in the sensitivity analyses on the parameters of incidence rates and hazard ratios. Conclusion: Screening people to target increased risks of cardiovascular diseases in this rural northern Chinese population is necessary. Screening strategy based on China-PAR risk prediction model could gain more health benefits than that based on numbers of CVD risk factors.