论著

转移牙合架固定法三维重建牙尖交错牙合的精度评价

  • 李琳琳 ,
  • 赵一姣 ,
  • 陈虎 ,
  • 王勇 ,
  • 孙玉春
展开
  • 北京大学口腔医学院·口腔医院,口腔医学数字化研究中心,口腔修复教研室 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081

收稿日期: 2019-10-08

  网络出版日期: 2020-02-20

基金资助

国家重点研发计划课题(2018YFB1107200);首都卫生发展科研专项(CFH2018-2-4103);北京大学口腔医院新技术新疗法项目(PKUSSNCT-18G01)

Accuracy of intercuspal occlusion in 3D reconstruction with the dental articulator position method

  • Lin-lin LI ,
  • Yi-jiao ZHAO ,
  • Hu CHEN ,
  • Yong WANG ,
  • Yu-chun SUN
Expand
  • Center of Digital Dentistry, Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China

Received date: 2019-10-08

  Online published: 2020-02-20

Supported by

Supported by the National Key R&D Program of China(2018YFB1107200);the Capital’s Funds for Health Improvement and Research(CFH2018-2-4103);the Program for New Clinical Techniques and Therapies of Peking University School and Hospital of Stomatology(PKUSSNCT-18G01)

摘要

目的:评价转移牙合架固定法三维扫描重建牙列石膏模型牙尖交错牙合的精度,为临床应用提供参考。方法:标准全牙列石膏模型底座分别粘贴直径6.0 mm树脂切削圆柱,于牙尖交错牙合(intercuspal occlusion,ICO)上平均值牙合架。以100 μm红色马蹄形咬合纸记录后牙区咬合接触点,以咬合记录硅橡胶记录ICO咬合接触,统计咬合纸及咬合记录硅橡胶重叠的咬合接触点数目NA。以模型扫描仪配套转移牙合架分别固定上颌、下颌及位于ICO的上下颌并扫描,利用扫描仪内置配准软件重建模型牙尖交错牙合,保存位于ICO的上下颌模型数据为STL格式。利用Geomagic Studio 2013软件偏差分析功能分析三维模型的咬合接触点数目NS。将NA作为参考值,NS作为测量值,评价模型扫描仪重现咬合接触的阳性预测值、灵敏度,即真阳性率。采用三坐标测量系统Faro Edge获取上下颌模型相对应圆柱底面圆心之间的距离DR作为参考值,构建三维模型圆柱底面圆心并测量其相对应圆心之间的距离DM作为测量值,计算圆心距离偏差。结果:模型扫描仪重现咬合接触点的阳性预测值是0.76、灵敏度是0.81,重建牙尖交错牙合的上下颌特征点之间的距离测量误差是(0.232±0.089) mm,经单样本t检验,特征点对5-5’差异没有统计学意义,其他特征点对之间的差异有统计学意义(P<0.05)。结论:转移牙合架固定法较好地再现了咬合接触点的个数和位置,满足临床需求,但该方法重建ICO的特征点距离大于参考值,以此进行修复体制作会导致咬合增高,需要进行临床调磨。

本文引用格式

李琳琳 , 赵一姣 , 陈虎 , 王勇 , 孙玉春 . 转移牙合架固定法三维重建牙尖交错牙合的精度评价[J]. 北京大学学报(医学版), 2020 , 52(1) : 138 -143 . DOI: 10.19723/j.issn.1671-167X.2020.01.022

Abstract

Objective: To evaluate the three-dimensional (3D) reconstruction accuracy of the intercuspal occlusion (ICO) of the dental casts, by the dental articulator position method, and provide a refe-rence for clinical application. Methods: The standard dental casts in ICO were mounted on average values articulator, and five pairs of milling resin cylinders were respectively attached to the base of both the casts. 100 μm articulating paper and occlusal record silicone rubber were used to detect the occlusal contact number between the posterior teeth of casts mounted on articulator in ICO. The occlusal contact numbers NA detected by the two methods were calculated simultaneously, as the reference. After the upper and lower casts were scanned separately, and the buccal data of casts in ICO were scanned with the aid of the dental articulator position, registration was carried out utilizing the registration software. Then the digital casts mounted in ICO as well as the buccal occlusal data were saved in standard tessellation language (STL) format. Geomagic Studio 2013 software was used to analyze the contact number NS between digital upper and lower casts by the “deviation analysis” function. The differences were compared between NS and NA, to evaluate the sensitivity and positive predict value (PPV) of the model scanner to reproduce the occlusal contact with the aid of dental articulator position. The distance DR between the centers of the circles at the top surface of the upper and lower corresponding cylinders was obtained by the three-coordinate measuring system Faro Edge, as the reference value. The Geomagic Studio 2013 software was used to construct the cylinders of digital casts and the distance DM between the centers of the circles at the top surface of the corresponding cylinders were measured, as the test value. The one-sample T test was used to analyze the variable differences between DM and DR. Results: The PPV of reproducing the occlusal contact point was 0.76 and sensitivity was 0.81. The distance error of the opposite cylinder was (0.232±0.089) mm. There was no statistical difference between the feature points 5-5’, while there were statistical differences between the other feature points. Conclusion: By the dental articulator position method, the model scanner reproduces the occlusal contact point with high sensitivity and PPV, and that meets clinical needs. Meanwhile, the distance between the feature points is greater than the reference value, which will lead to occlusal disturbance, and require clinical grinding.

参考文献

[1] Yee SHX, Esguerra RJ, Chew AAQ , et al. Three-dimensional static articulation accuracy of virtual models—part I: system trueness and precision[J]. J Prosthodont, 2018,27(2):129-136.
[2] Solaberrieta E, Minguez R, Etxaniz O , et al. Improving the digital workflow: direct transfer from patient to virtual articulator[J]. Int J Comput Dent, 2013,16(4):285-292.
[3] Ender A, Zimmermann M, Mehl A . Accuracy of complete- and partial-arch impressions of actual intraoral scanning systems in vitro[J]. Int J Comput Dent, 2019,22(1):11-19.
[4] 林志兴, 姚江武 . 数字化口腔修复(33)——不同扫描仪精度的三维分析[J]. 临床口腔医学杂志, 2017,33(5):306-309.
[5] Vandeweghe S, Vervack V, Vanhove C , et al. Accuracy of optical dental digitizers: an in vitro study[J]. Int J Periodontics Restorative Dent, 2015,35(1):115-121.
[6] 宋杨, 孙玉春, 赵一姣 , 等. 牙颌模型三维扫描仪精度定量评价[J]. 北京大学学报(医学版), 2013,45(1):140-144.
[7] 孙玉春, 李虹, 王勇 , 等. 无牙颌模型正中关系位三维重建精度的定量评价[J]. 中华口腔医学杂志, 2014,49(6):371-374.
[8] Delong R, Knorr S, Anderson GC , et al. Accuracy of contacts calculated from 3D images of occlusal surfaces[J]. J Dent, 2007,35(6):528-534.
[9] Delong R, Ko C, Anderson GC , et al. Comparing maximum intercuspal contacts of virtual dental patients and mounted dental casts[J]. J Prosthet Dent, 2002,88(6):622-630.
[10] Solaberrieta E, Otegi JR, Goicoechea N , et al. Comparison of a conventional and virtual occlusal record[J]. J Prosthet Dent, 2015,114(1):92-97.
[11] 张馨月, 李虹, 赵一姣 , 等. 两种结构光口内三维扫描仪获取单冠预备体数据质量的模型评价[J]. 中华口腔医学杂志, 2016,51(7):432-436.
[12] 王勇, 赵一姣, 司燕 . 与三维测量有关的名词浅析[J]. 中华口腔正畸学杂志, 2009,16(2):111-113.
[13] Litzenburger AP, Hickel R, Richter MJ , et al. Fully automatic CAD design of the occlusal morphology of partial crowns compared to dental technicians’ design[J]. Clin Oral Investig, 2013,17(2):491-496.
[14] Kollmuss M, Kist S, Goeke JE , et al. Comparison of chairside and laboratory CAD/CAM to conventional produced all-ceramic crowns regarding morphology, occlusion, and aesthetics[J]. Clin Oral Investig, 2016,20(4):791-797.
[15] Kollmuss M, Jakob F, Kirchner H , et al. Comparison of biogene-rically reconstructed and waxed-up complete occlusal surfaces with respect to the original tooth morphology[J]. Clin Oral Investig, 2013,17(3):851-857.
[16] Maruyama T, Nakamura Y, Hayashi T , et al. Computer-aided determination of occlusal contact points for dental 3-D CAD[J]. Med Biol Eng Comput, 2006,44(5):445-450.
[17] Boitelle P, Mawussi B, Tapie L , et al. A systematic review of CAD/CAM fit restoration evaluations[J]. J Oral Rehabil, 2014,41(11):853-874.
[18] Solaberrieta E, Otegi JR, Mínguez R , et al. Improved digital transfer of the maxillary cast to a virtual articulator[J]. J Prosthet Dent, 2014,112(4):921-924.
[19] Gartner C, Kordass B . The virtual articulator: development and evaluation[J]. Int J Comput Dent, 2003,6(1):11-24.
[20] Kordass B, Gartner C, Sohnel A , et al. The virtual articulator in dentistry: concept and development[J]. Dent Clin North Am, 2002,46(3):493-506.
[21] Solaberrieta E, Garmendia A, Minguez R , et al. Virtual facebow technique[J]. J Prosthet Dent, 2015,114(6):751-755.
[22] Solaberrieta E, Mínguez R, Barrenetxea L , et al. Direct transfer of the position of digitized casts to a virtual articulator[J]. J Prosthet Dent, 2013,109(6):411-414.
[23] He S, Kau CH, Liao L , et al. The use of a dynamic real-time jaw tracking device and cone beam computed tomography simulation[J]. Ann Maxillofac Surg, 2016,6(1):113-119.
[24] Hanssen N, Ruge S, Kordass B . SICAT function: anatomical real-dynamic articulation by merging cone beam computed tomography and jaw motion tracking data[J]. Int J Comput Dent, 2014,17(1):65-74.
[25] Kurbad A . Three-dimensional registration of real jaw motion trac-king data and its therapeutic consequences[J]. Int J Comput Dent, 2018,21(1):57-70.
[26] Ogawa T, Ogimoto T, Koyano K . Validity of the examination method of occlusal contact pattern relating to mandibular position[J]. J Dent, 2000,28(1):23-29.
[27] 李虹, 孙玉春, 赵一姣 , 等. 三种牙颌模型扫描仪牙尖交错(牙合)三维重建精度评价[J]. 口腔颌面修复学杂志, 2014,15(2):65-69.
[28] Solaberrieta E, Arias A, Brizuela A , et al. Determining the requirements, section quantity, and dimension of the virtual occlusal record[J]. J Prosthet Dent, 2016,115(1):52-56.
[29] 周春艳, 李勇, 邹峥嵘 . 三维点云ICP算法改进研究[J]. 计算机技术与发展, 2011,21(8):75-77.
[30] 宋倩 . 咬合纸指导临床调(牙合)可靠性的定量研究[D]. 西安: 第四军医大学, 2016.
[31] Brizuela-Velasco A, Alvarez-Arenal A, Ellakuria-Echevarria J , et al. Influence of articulating paper thickness on occlusal contacts registration: A preliminary report[J]. Int J Prosthodont, 2015,28(4):360-362.
[32] Millstein P, Maya A . An evaluation of occlusal contact marking indicators. A descriptive quantitative method[J]. J Am Dent Assoc, 2001,132(9):1280-1286, 1319.
[33] Rw S . Comparison of occlusal contacts on mounted dental models to contacts identified on 3D digital models using a new virtual alignment method [D]. Vancouver: University of British Colum-bia, 2009.
文章导航

/