收稿日期: 2018-04-26
网络出版日期: 2020-10-15
基金资助
国家自然科学基金(81102178);国家自然科学基金(81573225);北京市自然科学基金(7172115);北京大学医学交叉研究基金(BMU2017MX018)
Exploring parent-of-origin effects for non-syndromic cleft lip with or without cleft palate on PTCH1, PTCH2, SHH, SMO genes in Chinese case-parent trios
Received date: 2018-04-26
Online published: 2020-10-15
Supported by
National Natural Science Foundation of China(81102178);National Natural Science Foundation of China(81573225);Beijing Municipal Natural Science Foundation(7172115);Peking University Health Science Center Interdisciplinary Research Fund(BMU2017MX018)
目的:探索非综合征型唇腭裂(non-syndromic cleft lip with or without cleft palate,NSCL/P)这一类常见出生缺陷的可能致病机制,在Hedgehog(HH)通路基因中(PTCH1、PTCH2、SHH、SMO)探索基因多态性对NSCL/P的关联关系以及亲源效应(parent-of-origin effects,PoO)对NSCL/P发病风险的影响。方法:纳入806个中国非综合征型唇腭裂核心家系,对HH通路基因(PTCH1、PTCH2、SHH、SMO)的83个单核苷酸多态性位点(single nucleotide polymorphisms,SNPs)进行传递不平衡检验(transmission disequilibrium test,TDT), 并采用对数线性模型进行亲源效应分析。家系样本来自“唇腭裂基因和交互作用的国际合作研究”项目。采用Plink进行TDT检验;通过R软件中的Haplin v6.2.1软件包开展亲源效应分析。采用Bonferroni法进行多重检验校正。结果:经过质量控制,共纳入65个SNPs进行分析,Bonferroni显著性水平为7.7×10 -4(0.05/65)。未校正P值前,关联分析发现rs4448343与NSCL/P存在关联(P=0.023), 6个单体型(rs10512249-rs4448343、rs1461208-rs7786445、rs10512249-rs4448343、rs16909865-rs10512249-rs4448343、rs1461208-rs7786445-rs12698335、rs288756-rs288758-rs1151790)与NSCL/P存在关联(P<0.05);6个单体型(rs288765-rs1233563、rs12537550-rs11765352、rs872723-rs288765-rs1233563、rs288765-rs1233563-rs288756、rs6459952-rs12537550-rs11765352、rs12537550-rs11765352-rs6971211)具有潜在的PoO效应(P<0.05)。以上结果经过多重检验校正,均无统计学意义(P>7.7×10 -4)。结论:未发现HH通路基因多态性与NSCL/P的关联,未发现HH通路基因通过PoO效应影响NSCL/P发病风险。
李文咏 , 王梦莹 , 周仁 , 王斯悦 , 郑鸿尘 , 朱洪平 , 周治波 , 吴涛 , 王红 , 石冰 . 中国人群Hedgehog通路基因与非综合征型唇腭裂的亲源效应[J]. 北京大学学报(医学版), 2020 , 52(5) : 809 -814 . DOI: 10.19723/j.issn.1671-167X.2020.05.003
Objective: Non-syndromic cleft lip with or without cleft palate (NSCL/P) is a common birth defect, affecting 1.4 per 1 000 live births, and multiple genetic and environmental risk factors influencing its risk. All the known genetic risk factors accounted for a small proportion of the heritability. Several authors have suggested parent-of-origin effects (PoO) may play an important role in the etiology of this complex and heterogeneous malformation. To clarify the genetic association between PTCH1, PTCH2, SHH and SMO in hedgehog (HH) pathway and NSCL/P, as well as testing for potential PoO effects in Chinese case-parent trios. Methods: We tested for transmission disequilibrium tests (TDT) and PoO effects using 83 common single nucleotide polymorphic (SNP) markers of HH pathway genes from 806 NSCL/P case-parent trios. These trios were drawn from an international consortium established for a genome-wide association studies (GWAS) of non-syndromic oral clefts of multiple ethnicities. DNA samples were collected from each trio. Single marker and haplotype based analysis were performed both in TDT tests and PoO effects. SNPs were excluded if they (i) had a call rate of < 95%, (ii) had a minor allele frequency (MAF) of < 0.05, (iii) had Mendelian errors over all trios of >5%, (iv) had a genotype distribution in the parents that deviated from the Hardy-Weinberg equilibrium (HWE) (P < 0.000 1). The process was done using Plink (version 1.07, http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml). TDT test was performed in Plink v1.07. A log-linear model was used to explore PoO effects using Haplin v6.2.1 as implemented in R package v3.4.2. Significance level was assessed using the Bonferroni correction. Results: A total of 18 SNPs were dropped due to low MAF, thus leaving 65 SNPs available for the analysis. Thus the Bonferroni threshold was 7.7×10 -4 (0.05/65). Nominal significant association with NSCL/P was found at a SNP (rs4448343 in PTCH1, P=0.023) and six haplotypes (rs10512249-rs4448343, rs1461208-rs7786445, rs10512249-rs4448343, rs16909865-rs10512249-rs4448343, rs1461208-rs7786445-rs12698335, and rs288756-rs288758-rs1151790, P<0.05). A total of six haplotypes (rs288765-rs1233563, rs12537550-rs11765352, rs872723-rs288765-rs1233563, rs288765-rs1233563-rs288756, rs6459952-rs12537550-rs11765352, and rs12537550-rs11765352-rs6971211) showed PoO effect (P<0.05). None of the results remained significant after the Bonferroni correction (P>7.7×10 -4). Conclusion: Neither significant association between SNPs within HH pathway and the risk of NSCL/P nor PoO effects was seen in this study.
| [1] | Wang M, Yuan Y, Wang Z, et al. Prevalence of orofacial clefts among live births in China: a systematic review and meta-analysis[J]. Birth Defects Res, 2017,109(13):1011-1019. |
| [2] | Harville EW, Wilcox AJ, Lie RT, et al. Cleft lip and palate versus cleft lip only: are they distinct defects[J]. Am J Epidemiol, 2005,162(5):448-453. |
| [3] | Leslie EJ, Marazita ML. Genetics of cleft lip and cleft palate[J]. Am J Med Genet C Semin Med Genet, 2013,163c(4):246-258. |
| [4] | Jiang R, Bush JO, Lidral AC. Development of the upper lip: morphogenetic and molecular mechanisms[J]. Dev Dyn, 2006,235(5):1152-1166. |
| [5] | Mossey PA, Little J, Munger RG, et al. Cleft lip and palate[J]. Lancet, 2009,374(9703):1773-1785. |
| [6] | Grant SF, Wang K, Zhang H, et al. A genome-wide association study identifies a locus for nonsyndromic cleft lip with or without cleft palate on 8q24[J]. J Pediatr, 2009,155(6):909-913. |
| [7] | Beaty TH, Marazita ML, Leslie EJ. Genetic factors influencing risk to orofacial clefts: today’s challenges and tomorrow's opportunities[J]. F1000Res, 2016,5:2800. |
| [8] | Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases[J]. Nature, 2009,461(7265):747-753. |
| [9] | Guilmatre A, Sharp AJ. Parent of origin effects[J]. Clin Genet, 2012,81(3):201-209. |
| [10] | Yu Y, Zuo X, He M, et al. Genome-wide analyses of non-syndromic cleft lip with palate identify 14 novel loci and genetic heterogeneity[J]. Nat Commun, 2017,8:14364. |
| [11] | Beaty TH, Murray JC, Marazita ML, et al. A genome-wide association study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4[J]. Nat Genet, 2010,42(6):525-529. |
| [12] | Gjessing HK, Lie RT. Case-parent triads: estimating single- and double-dose effects of fetal and maternal disease gene haplotypes[J]. Ann Hum Genet, 2006,70(Pt 3):382-396. |
| [13] | Gjerdevik M, Haaland OA, Romanowska J, et al. Parent-of-origin-environment interactions in case-parent triads with or without independent controls[J]. Ann Hum Genet, 2018,82(2):60-73. |
| [14] | Weinberg CR. Methods for detection of parent-of-origin effects in genetic studies of case-parents triads[J]. Am J Hum Genet, 1999,65(1):229-235. |
| [15] | Briscoe J, Therond PP. The mechanisms of Hedgehog signalling and its roles in development and disease[J]. Nat Rev Mol Cell Biol, 2013,14(7):416-429. |
| [16] | Taipale J, Cooper MK, Maiti T, et al. Patched acts catalytically to suppress the activity of Smoothened[J]. Nature, 2002,418(6900):892-897. |
| [17] | Wantia N, Rettinger G. The current understanding of cleft lip malformations[J]. Facial Plast Surg, 2002,18(3):147-153. |
| [18] | Grosen D, Bille C, Petersen I, et al. Risk of oral clefts in twins[J]. Epidemiology, 2011,22(3):313-319. |
| [19] | Mangold E, Ludwig KU, Birnbaum S, et al. Genome-wide association study identifies two susceptibility loci for nonsyndromic cleft lip with or without cleft palate[J]. Nat Genet, 2010,42(1):24-26. |
| [20] | Sun Y, Huang Y, Yin A, et al. Genome-wide association study identifies a new susceptibility locus for cleft lip with or without a cleft palate[J]. Nat Commun, 2015,6:6414. |
| [21] | Lo Muzio L. Nevoid basal cell carcinoma syndrome (Gorlin syndrome)[J]. Orphanet J Rare Dis, 2008,3(1):32. |
| [22] | Metzis V, Courtney AD, Kerr MC, et al. Patched1 is required in neural crest cells for the prevention of orofacial clefts[J]. Hum Mol Genet, 2013,22(24):5026-5035. |
| [23] | Xiao Y, Taub MA, Ruczinski I, et al. Evidence for SNP-SNP interaction identified through targeted sequencing of cleft case-parent trios[J]. Genet Epidemiol, 2017,41(3):244-250. |
| [24] | de Araujo TK, Secolin R, Felix TM, et al. A multicentric association study between 39 genes and nonsyndromic cleft lip and palate in a Brazilian population[J]. J Craniomaxillofac Surg, 2016,44(1):16-20. |
| [25] | Rubini M, Brusati R, Garattini G, et al. Cystathionine beta-synthase c.844ins68 gene variant and non-syndromic cleft lip and palate[J]. Am J Med Genet A, 2005,136a(4):368-372. |
| [26] | Reutter H, Birnbaum S, Mende M, et al. TGFB3 displays parent-of-origin effects among central Europeans with nonsyndromic cleft lip and palate[J]. J Hum Genet, 2008,53(7):656-661. |
| [27] | Sull JW, Liang KY, Hetmanski JB, et al. Differential parental transmission of markers in RUNX2 among cleft case-parent trios from four populations[J]. Genet Epidemiol, 2008,32(6):505-512. |
| [28] | Sull JW, Liang KY, Hetmanski JB, et al. Maternal transmission effects of the PAX genes among cleft case-parent trios from four populations[J]. Eur J Hum Genet, 2009,17(6):831-839. |
| [29] | Sull JW, Liang KY, Hetmanski JB, et al. Evidence that TGFA influences risk to cleft lip with/without cleft palate through unconventional genetic mechanisms[J]. Hum Genet, 2009,126(3):385-394. |
| [30] | Suazo J, Santos JL, Jara L, et al. Parent-of-origin effects for MSX1 in a Chilean population with nonsyndromic cleft lip/palate[J]. Am J Med Genet A, 2010,152a(8):2011-2016. |
| [31] | Shi M, Murray JC, Marazita ML, et al. Genome wide study of maternal and parent-of-origin effects on the etiology of orofacial clefts[J]. Am J Med Genet A, 2012,158a(4):784-794. |
| [32] | Garg P, Ludwig KU, Bohmer AC, et al. Genome-wide analysis of parent-of-origin effects in non-syndromic orofacial clefts[J]. Eur J Hum Genet, 2014,22(6):822-830. |
| [33] | Morris RW, Kaplan NL. On the advantage of haplotype analysis in the presence of multiple disease susceptibility alleles[J]. Genet Epidemiol, 2002,23(3):221-233. |
/
| 〈 |
|
〉 |