论著

纳米二氧化钛亚急性经口暴露对大鼠氧化/抗氧化生物标志和炎性因子的影响

  • 周迪 ,
  • 陈章健 ,
  • 胡贵平 ,
  • 阎腾龙 ,
  • 龙昌茂 ,
  • 冯慧敏 ,
  • 贾光
展开
  • 北京大学公共卫生学院劳动卫生与环境卫生学系, 北京 100191

收稿日期: 2018-09-08

  网络出版日期: 2020-10-15

基金资助

国家重点研发计划重点专项(2017YFC1600204);国家自然科学基金(81703257);北京大学优博培育项目(BMU20160564)

Influence of oxidative/antioxidative biomarkers and inflammatory cytokines on rats after sub-acute orally administration of titanium dioxide nanoparticles

  • Di ZHOU ,
  • Zhang-jian CHEN ,
  • Gui-ping HU ,
  • Teng-long YAN ,
  • Chang-mao LONG ,
  • Hui-min FENG ,
  • Guang JIA
Expand
  • Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing 100191, China

Received date: 2018-09-08

  Online published: 2020-10-15

Supported by

National Key Research and Development Program of China(2017YFC1600204);National Natural Science Foundation of China(81703257);Excellent Doctoral Training Program of Peking University(BMU20160564)

摘要

目的:评估纳米二氧化钛(titanium dioxide, TiO2)亚急性经口暴露对大鼠肝、小肠、大肠及血液等组织、脏器氧化/抗氧化生物标志和炎性因子的影响。方法:将24只4周龄清洁级Sprague Dawley(SD)雄性大鼠按体质量随机分为对照、低剂量、中剂量和高剂量4组,每组6只,以纳米TiO2每日灌胃,染毒剂量分别为0、2、10和50 mg/kg体质量,持续28 d。记录大鼠进食量、体质量和异常表现等一般情况,末次染毒后禁食12 h,取大鼠腹主动脉血,离心收集血清,取肝、小肠、大肠组织制备匀浆。采用酶联免疫吸附试验(enzyme linked immunosorbent assay, ELISA)及微板比色法测定氧化/抗氧化生物标志:总超氧化物歧化酶(superoxide dismutase, SOD)、还原型谷胱甘肽(glutathione, GSH)、谷胱甘肽过氧化物酶(glutathione peroxidase, GSH-Px)、总巯基(total mercapto, T-SH)、氧化型谷胱甘肽(glutathione disulfide, GSSG)和丙二醛(malomdialdehvde, MDA);测定炎性因子:白细胞介素-6(interleukin 6, IL-6)和肿瘤坏死因子-α(tumor necrosis factor alpha, TNF-α)。结果:与对照组相比,各组大鼠体质量、进食量、脏器系数均未见明显差异,血清、肝、小肠、大肠中GSH、GSH-Px、T-SH和IL-6无显著改变。与各自对照组相比,高剂量组大鼠血清中SOD活性显著上升,中、高剂量组小肠中GSSG浓度显著升高,低、高剂量组肝MDA浓度显著升高,中剂量组和高剂量组肝TNF-α浓度显著升高。结论:纳米TiO2亚急性经口暴露可造成大鼠血液组织抗氧化酶活性增加,肝和小肠氧化产物增加,肝脏炎性因子水平增高,肝对纳米TiO2经口暴露毒性最为敏感,随后依次为小肠和血液组织,大肠最不敏感。

本文引用格式

周迪 , 陈章健 , 胡贵平 , 阎腾龙 , 龙昌茂 , 冯慧敏 , 贾光 . 纳米二氧化钛亚急性经口暴露对大鼠氧化/抗氧化生物标志和炎性因子的影响[J]. 北京大学学报(医学版), 2020 , 52(5) : 821 -827 . DOI: 10.19723/j.issn.1671-167X.2020.05.005

Abstract

Objective: To evaluate the sub-acute oral effect of titanium dioxide (TiO2) nanoparticles on the oxidation/antioxidation biomarkers and inflammatory cytokines in blood, liver, intestine, and colon in rats. Methods: Twenty four 4-week-old clean-grade Sprague Dawley (SD) rats were randomly devided into 4 groups by body weight (n=6, control, low, middle, and high), in which the rats were orally exposed to TiO2 nanoparticles at doses of 0, 2, 10 and 50 mg/kg body weight/day for 28 consecutive days separately. Food intake, body weight and abnormal behaviors during the experiment were recorded. The rats were euthanized on the 29th day. The blood was collected via abdominal aortic method and centrifuged to collect the serum. Tissues from liver, intestine and colon were collected and homogenated. Then enzyme-linked immunosorbent assay (ELISA) and microwell plate methods were used to detect oxidation/antioxidation biomarkers including superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GSH-Px), total mercapto (T-SH), glutathione disulfide (GSSG), malomdialdehvde (MDA) and inflammatory cytokines including interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in the serum, liver, intestine and colon in the rats. Results: Compared with the control group, no significant differences in body weight, food intake and organ coefficients were observed in all the three groups after TiO2 gavage. No significant changes in GSH, GSH-Px, T-SH, and IL-6 were observed. Compared with the control group, significant increase of SOD activity in serum in high dose group, signi-ficant increase of GSSG concentration in intestine in middle and high dose group and significant increase of MDA concentration in liver in low and high dose group were observed. Compared with the control group, a significant increase of TNF-α in liver in middle and high dose group was observed. Conclusion: TiO2 nanoparticle can increase antioxidant enzymes activities in blood, increase oxidative biomarkers in liver and intestine, increase inflammatory cytokines in liver in rats after a 28-day sub-acute orally administration. Among blood, liver, intestine, and colon, liver is most sensitive to the toxicity induced by TiO2 nanoparticles, followed by intestine, blood, and colon in sequence.

参考文献

[1] Warheit DB, Donner EM. Risk assessment strategies for nanoscale and fine-sized titanium dioxide particles:Recognizing hazard and exposure issues[J]. Food Chem Toxicol, 2015,85:138-147.
[2] Weir A, Westerhoff P, Fabricius L, et al. Titanium dioxide nanoparticles in food and personal care products[J]. Environ Sci Technol, 2012,46(4):2242-2250.
[3] Yang Y, Doudrick K, Bi X, et al. Characterization of food-grade titanium dioxide: the presence of nanosized particles[J]. Environ Sci Technol, 2014,48(11):6391-6400.
[4] Robichaud CO, Uyar AE, Darby MR, et al. Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment[J]. Environ Sci Technol, 2009,43(12):4227-4233.
[5] Rompelberg C, Heringa MB, van Donkersgoed GC, et al. Oral intake of added titanium dioxide and its nanofraction from food products, food supplements and toothpaste by the Dutch population[J]. Nanotoxicology, 2016,10(10):1404-1414.
[6] Scherbart AM, Langer J, Bushmelev A, et al. Contrasting macrophage activation by fine and ultrafine titanium dioxide particles is associated with different uptake mechanisms[J]. Part Fibre Toxicol, 2011,8(31):1-19.
[7] Katsumiti A, Berhanu D, Howard KT, et al. Cytotoxicity of TiO2 nanoparticles to mussel hemocytes and gill cells in vitro: influence of synjournal method, crystalline structure, size and additive[J]. Nanotoxicology, 2015,9(5):543-553.
[8] Takaki K, Higuchi Y, Hashii M, et al. Induction of apoptosis associated with chromosomal DNA fragmentation and caspase-3 activation in leukemia L1210 cells by TiO2 nanoparticles[J]. J Biosci Bioeng, 2014,117(1):129-133.
[9] Zhang Z, Liang ZC, Zhang JH, et al. Nano-sized TiO2 (nTiO2) induces metabolic perturbations in Physarum polycephalum macroplasmodium to counter oxidative stress under dark conditions[J]. Ecotoxicol Environ Saf, 2018,154:108-117.
[10] Ammendolia MG, Iosi F, Maranghi F, et al. Short-term oral exposure to low doses of nano-sized TiO2 and potential modulatory effects on intestinal cells[J]. Food Chem Toxicol, 2017,102:63-75.
[11] Bachler G, von Goetz N, Hungerbuhler K. Using physiologically based pharmacokinetic (PBPK) modeling for dietary risk assessment of titanium dioxide (TiO2) nanoparticles[J]. Nanotoxicology, 2015,9(3):373-380.
[12] Huybrechts I, Sioena I, Boon PE, et al. Long-term dietary exposure to different food colours in young children living in different European countries[J]. EFSA Support Publ, 2010,7(5):53E.
[13] Cui YL, Gong XL, Duan YM, et al. Hepatocyte apoptosis and its molecular mechanisms in mice caused by titanium dioxide nanoparticles[J]. J Hazard Mater, 2010,183(1-3):874-880.
[14] He J, Wang T, Wang P, et al. A novel mechanism underlying the susceptibility of neuronal cells to nitric oxide: the occurrence and regulation of protein S-nitrosylation is the checkpoint[J]. J Neurochem, 2007,102(6):1863-1874.
[15] Lugrin J, Rosenblatt VN, Parapanov R, et al. The role of oxidative stress during inflammatory processes[J]. Biol Chem, 2014,395(2):203-230.
[16] Lei XG, Zhu JH, Cheng WH, et al. Paradoxical roles of antioxidant enzymes: basic mechanisms and health implications[J]. Physiol Rev, 2016,96(1):307-364.
[17] Huang XZ, Lan YW, Liu ZK, et al. Salinity mediates the toxic effect of nano-TiO2 on the juvenile olive flounder Paralichthys olivaceus [J]. Sci Total Environ, 2018, 640-641:726-735.
[18] Sentellas S, Morales IO, Zanuy M, et al. GSSG/GSH ratios in cryopreserved rat and human hepatocytes as a biomarker for drug induced oxidative stress[J]. Toxicol Vitr, 2014,28(5):1006-1015.
[19] Hu HL, Guo Q, Wang CL, et al. Titanium dioxide nanoparticles increase plasma glucose via reactive oxygen species-induced insulin resistance in mice[J]. J Appl Toxicol, 2015,35(10):1122-1132.
[20] Shukla RK, Kumar A, Vallabani NVS, et al. Titanium dioxide nanoparticle-induced oxidative stress triggers DNA damage and hepatic injury in mice[J]. Nanomedicine, 2014,9(9):1423-1434.
[21] Gornati R, Longo A, Rossi F, et al. Effects of titanium dioxide nanoparticle exposure in Mytilus galloprovincialis gills and digestive gland[J]. Nanotoxicology, 2016,10(6):807-817.
[22] Chen ZJ, Wang Y, Zhuo L, et al. Effect of titanium dioxide nanoparticles on the cardiovascular system after oral administration[J]. Toxicol Lett, 2015,239(2):123-130.
[23] Sycheva LP, Zhurkov VS, Iurchenko VV, et al. Investigation of genotoxic and cytotoxic effects of micro- and nanosized titanium dioxide in six organs of mice in vivo[J]. Mutat Res, 2011,726(1):8-14.
文章导航

/