收稿日期: 2018-09-18
网络出版日期: 2020-10-15
基金资助
2017重庆市卫生计生委医学科研项目(2017MSXM075);重庆市渝中区科技计划项目(20170407);重庆市高校市级口腔生物医学工程重点实验室资助项目(CXTDG201602006);2016年重庆高校创新团队建设计划资助项目
Effects of salinomycin on proliferation and apoptosis of oral squamous cell carcinoma
Received date: 2018-09-18
Online published: 2020-10-15
Supported by
Medical Research Project of Chongqing Health and Family Planning Commission of Chongqing Province(2017MSXM075);Program for Yuzhong District Scientific and Technological Project(20170407);Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education(CXTDG201602006);Program for Innovation Team Building at Institutions of Higher Education in Chongqing in 2016
目的:探讨沙利霉素(salinomycin)对口腔鳞癌细胞增殖和凋亡的影响,并初步探讨沙利霉素对信号通路的影响。方法:培养口腔鳞状细胞癌细胞系CAL-27,将1、2、4、8、16、32 μmol/L沙利霉素和1.25、2.5、5、10、20、40、80 μmol/L顺铂与CAL-27细胞共同培养,24 h和48 h后用细胞计数试剂盒-8(cell counting kit-8,CCK-8)法检测沙利霉素和顺铂对CAL-27细胞增殖的影响;0、2、4、8 μmol/L沙利霉素和0、5、10、20 μmol/L顺铂与CAL-27细胞共培养48 h后,通过流式细胞术检测沙利霉素和顺铂对CAL-27细胞周期的影响,蛋白免疫印迹法(Western blot)检测CAL-27细胞中天冬氨酸特异性半胱氨酸蛋白酶-3(cysteine-containing aspartate-specific proteases-3,Caspase-3)、天冬氨酸特异性半胱氨酸蛋白酶-9(cysteine-containing aspartate-specific proteases-9,Caspase-9)、脱氧核糖核酸(deoxyribonucleic acid,DNA)修复酶(poly ADP-ribose polymerase,PARP)、蛋白激酶B(protein kinase B, Akt)和磷酸化蛋白激酶B (phosphorylated protein kinase B,p-Akt)的表达。结果:CCK-8实验表明沙利霉素和顺铂均能显著抑制口腔鳞状细胞癌CAL-27细胞增殖,且抑制作用呈时间依赖性和药物浓度依赖性,但是相对于临床一线化疗药物顺铂而言,沙利霉素对CAL-27细胞增殖的抑制效果更加显著(P<0.001)。细胞周期检测表明,与加入二甲基亚砜(dimethyl sulfoxide,DMSO)的对照组相比,8 μmol/L沙利霉素与CAL-27细胞共同培养48 h后,细胞休眠期/DNA合成前期的CAL-27细胞比例明显升高(40.40%±1.99% vs.64.46%±0.90%,P<0.05), DNA合成期和DNA合成后期/有丝分裂期的CAL-27细胞比例出现降低(24.32%±2.30% vs.18.73%±0.61%,P<0.05,35.01%±1.24% vs.16.54%±1.31%,P<0.05);顺铂对CAL-27细胞周期没有特异性改变。蛋白免疫印迹法结果显示,沙利霉素在上调CAL-27细胞中Caspase-3和 Caspase-9蛋白表达(P<0.05)的同时下调PARP、Akt和p-Akt蛋白的表达(P<0.05)。结论:相对于顺铂而言,沙利霉素对CAL-27细胞增殖有更强的抑制作用,并且能将口腔鳞状细胞癌CAL-27细胞周期阻滞在细胞休眠期/DNA合成前期,同时能够诱导CAL-27细胞发生凋亡,这一机制可能和Akt/p-Akt 信号通路相关。
苏雷震 , 陈洁 , 李显 , 季平 . 沙利霉素对口腔鳞癌细胞增殖和凋亡的影响[J]. 北京大学学报(医学版), 2020 , 52(5) : 902 -906 . DOI: 10.19723/j.issn.1671-167X.2020.05.018
Objective: To investigate the effects of salinomycin on the proliferation and apoptosis of oral squamous carcinoma cells and to further understand the mechanisms of these effects. Methods: The human oral squamous carcinoma cell line CAL-27 was cultured in different concentrations of salinomycin and cisplatin. After co-culture with 0, 1, 2, 4, 8, 16 and 32 μmol/L salinomycin or 0, 1.25, 2.5, 5, 10, 20, 40 and 80 μmol/L cisplatin for 24 hours and 48 hours, the proliferation of oral squamous carcinoma cells were detected by cell counting kit-8(CCK-8) assay. After being exposed to 0, 2, 4, 8 μmol/L salinomycin and 0, 5, 10, 20 μmol/L cisplatin for 48 hours, the cell cycle of oral squamous carcinoma cells was detected by flow cytometry assay, and Western blot analysis was performed to analyze the expressions of cysteine-containing aspartate-specific proteases-3(Caspase-3), cysteine-containing aspartate-specific proteases-9(Caspase-9), poly ADP-ribose polymerase (PARP), protein kinase B (Akt) and phosphorylated protein kinase B (p-Akt) protein in oral squamous carcinoma cells. Results: Both salinomycin and cisplatin significantly inhibited the proliferation of oral squamous cell carcinoma CAL-27 cells in a time- and dose-dependent manner. However, compared with the first-line chemotherapeutic drug cisplatin, salinomycin showed stronger anti-proliferation activity in oral squamous carcinoma cells than cisp-latin (P<0.001). After being exposed to 8 μmol/L salinomycin, CAL-27 cells exhibited markedly higher proportion in quiescent/ first gap phases (40.40%±1.99% vs. 64.46%±0.90%, P<0.05), and had a significantly lower proportion in synthesis phases and second gap / mitosis phases (24.32%±2.30% vs. 18.73%±0.61%, P<0.05; 35.01%±1.24% vs. 16.54%±1.31%, P<0.05) compared with the dimethyl sulfoxide control group; moreover cisplatin didn’t show cell-cycle specific effect on CAL-27. Western blot proved that salinomycin could up-regulate the expressions of Caspase-3 and Caspase-9 protein in oral squamous cell carcinoma CAL-27 cells (P<0.05). At the same time, the levels of PARP, Akt and p-Akt protein were down-regulated (P<0.05). Conclusion: Compared with cisplatin, salinomycin has a better inhibitory effect on the proliferation of oral squamous carcinoma cells and blocks the cell cycle process at the quiescent / first gap phase. At the same time, salinomycin could trigger apoptosis of oral squamous carcinoma cells and the mechanism is associated with the Akt/p-Akt signaling pathway.
Key words: Salinomycin; Oral squamous cell carcinoma; Cell cycle arrest; Apoptosis
| [1] | Ferlay J, Soerjomataram1 I, Dikshit R, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer, 2015,136(5):E359-E386. |
| [2] | 孟宪瑞, 刘进忠. 口腔癌的早期诊断[J]. 国际口腔医学杂志, 2008,35(3):329-331. |
| [3] | Abrah?o R, Anantharaman D, Gaborieau V, et al. The influence of smoking, age and stage at diagnosis on the survival after larynx,hypopharynx and oral cavity cancers in Europe: The ARCAGE study[J]. Int J Cancer, 2018,143(1):32-44. |
| [4] | Cho H, Nishiike S, Yamamoto Y, et al. Docetaxel, cisplatin,and fluorouracil for patients with inoperable recurrent or metastatic head and neck squamous cell carcinoma[J]. Auris Nasus Larynx, 2015,42(5):396-400. |
| [5] | Gupta PB, Onder TT, Jiang G, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening[J]. Cell, 2009,138(4):645-659. |
| [6] | Zhang B, Wang X, Cai F, et al. Effects of salinomycin on human ovarian cancer cell line OV2008 are associated with modulating p38 MAPK[J]. Tumor Biol, 2012,33(6):1855-1862 |
| [7] | Wu D, Zhang Y, Huang J, et al. Salinomycin inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cell in vitro and suppresses tumor growth in vivo[J]. Biochem Bioph Res Co, 2014,443(2):712-717. |
| [8] | Dhaheri AI, Attoub S, Arafat K, et al. Salinomycin induces apoptosis and senescence in breast cancer: Up regulation of p21, down regulation of survivin and histone H3 and H4 hyperacetylation[J]. BBA-GEN Subjects, 2013,1830(4):3121-3135. |
| [9] | Arafat K, Iratni R, Takahashi T, et al. Inhibitory effects of salinomycin on cell survival, colony growth, migration, and invasion of human non-small cell lung cancer A549 and LNM35: Involvement of NAG-1[J]. PLoS One, 2013,8(6):e66931. |
| [10] | Parajuli B, Lee HG, Kwon SH, et al. Salinomycin inhibits Akt/NF-κB and induces apoptosis in cisplatin resistant ovarian cancer cells[J]. Cancer Epidemiology, 2013,37(4):512-517. |
| [11] | 亓放, 张宝泉, 徐炎, 等. 顺铂诱导的喉癌细胞凋亡及其对细胞周期的影响[J]. 中华医学杂志, 1999,79(4):298-301. |
| [12] | 徐志巧, 庞国明. 实用肿瘤临床药物手册[M]. 北京: 中国医药科技出版社, 2013: 282. |
| [13] | Fuchs D, Heinold A, Opelz G, et al. Salinomycin induces apoptosis and overcomes apoptosis resistance in human cancer cells[J]. Biochem Bioph Res Co, 2009,390(3):743-749. |
| [14] | Nuutinen U, Postila V, Matto M, et al. Inhibition of PI3-kinase-Akt pathway enhances dexamethasolle-induced apoptosis in a human follicular lymphoma cell line[J]. Exp Cell Res, 2006,312(3):322-330. |
| [15] | Jeong SJ, Dasgupta A, Jung KJ, et al. PI3K/AKT inhibition induces caspase-dependent apoptosis in HTLV-1 transformed cells[J]. Virology, 2008,370(2):264-272. |
/
| 〈 |
|
〉 |