论著

广泛型侵袭性牙周炎患者牙根形态异常与相关致病基因的关联

  • 刘建 ,
  • 王宪娥 ,
  • 吕达 ,
  • 乔敏 ,
  • 张立 ,
  • 孟焕新 ,
  • 徐莉 ,
  • 毛铭馨
展开
  • 北京大学口腔医学院·口腔医院,牙周科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081

收稿日期: 2020-09-29

  网络出版日期: 2021-02-07

Association between root abnormalities and related pathogenic genes in patients with generalized aggressive periodontitis

  • Jian LIU ,
  • Xian-e WANG ,
  • Da LV ,
  • Min QIAO ,
  • Li ZHANG ,
  • Huan-xin MENG ,
  • Li XU ,
  • Ming-xin MAO
Expand
  • Department of Periodontology,Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China

Received date: 2020-09-29

  Online published: 2021-02-07

摘要

目的: 探索广泛型侵袭性牙周炎(generalized aggressive periodontitis,GAgP)患者牙根形态异常与骨代谢或牙根发育相关基因多态性的关联。方法: 纳入179例GAgP患者,平均(27.23±5.19)岁,男 ∶女=67 ∶112,平均存留牙数(26.80±1.84)颗。采用基于基质辅助激光解吸电离飞行时间质谱技术进行 9个与骨代谢和牙根发育相关基因的13个单核苷酸多态性位点(single nucleotide polymorphisms,SNPs)的基因型检测。采用全口根尖片评判牙根形态异常,包括锥根、细长根、冠根比例失调、弯曲根、融合根、后牙根形态异常,分析13个SNPs位点不同基因型根形态异常牙的数量及发生率。结果: GAgP患者根形态异常牙构成比为14.49%(695/4 798颗),平均(3.88±3.84)颗。维生素D受体(vitamin D receptor,VDR)基因rs2228570位点的CC、CT、TT基因型患者根形态异常牙数量分别为(4.66±4.10)、(3.71±3.93)和(2.68±2.68)颗,CC基因型和TT基因型之间差异有统计学意义(t=2.62,P=0.01)。降钙素受体(calcitotin receptor,CTR)基因rs2283002位点CC、CT、TT基因型患者根形态异常数分别为(5.02±3.70)、(3.43±3.95)、(3.05±3.12)颗,CC基因型的根形态异常发病率高于CT和TT基因型(87.86% vs. 65.26%和63.64%,P=0.006,adjusted OR=3.71,95%CI:1.45~9.50)。结论: VDR rs2228570及CTR rs2283002位点可能与广泛型侵袭性牙周炎患者牙根形态异常的发生有关,值得进一步研究。

本文引用格式

刘建 , 王宪娥 , 吕达 , 乔敏 , 张立 , 孟焕新 , 徐莉 , 毛铭馨 . 广泛型侵袭性牙周炎患者牙根形态异常与相关致病基因的关联[J]. 北京大学学报(医学版), 2021 , 53(1) : 16 -23 . DOI: 10.19723/j.issn.1671-167X.2021.01.004

Abstract

Objective: To explore the association between the abnormal root morphology and bone metabolism or root development related gene polymorphism in patients with generalized aggressive periodontitis.Methods: In the study, 179 patients with generalized aggressive periodontitis were enrolled, with an average age of (27.23±5.19) years, male / female = 67/112. The average number of teeth remaining in the mouth was (26.80±1.84). Thirteen single nucleotide polymorphisms (SNPs) of nine genes which related to bone metabolism and root development were detected by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). Root abnormalities were identified using periapical radiographs. The abnormal root morphology included cone-rooted teeth,slender-root teeth,short-rooted teeth,curved-rooted teeth,syncretic-rooted molars,and molar root abnormalities. The number of teeth and incidence of abnormal root morphology in different genotypes of 13 SNPs were analyzed.Results: The constituent ratio of root with root abnormality in GAgP patients was 14.49%(695/4 798). The average number of teeth with abnormal root morphology in GAgP was (3.88±3.84). The average number of teeth with abnormal root morphology in CC, CT and TT genotypes in vitamin D receptor (VDR) rs2228570 was (4.66±4.10), (3.71±3.93) and (2.68±2.68). There was significant difference between TT genotype and CC genotype (t = 2.62, P =0.01). The average number of root morphological abnormalities in CC, CT and TT genotypes of Calcitotin Receptor (CTR) gene rs2283002 was (5.02±3.70),(3.43±3.95), and (3.05±3.12). The incidence of root morphological abnormalities in CC genotype was higher than that in the patients with CT and TT, and the difference was statistically significant(87.86% vs. 65.26% & 63.64%, P=0.006,adjusted OR =3.71,95%CI: 1.45-9.50). There was no significant difference in the incidence of abnormal root morphology between CT and TT genotypes.Conclusion: VDR rs2228570 and CTR rs2283002 may be associated with the occurrence of abnormal root morphology in patients with generalized aggressive periodontitis, which is worthy of further research.

参考文献

[1] Stabholz A, Soskolne WA, Shapira L. Genetic and environmental risk factors for chronic periodontitis and aggressive periodontitis[J]. Periodontology, 2010,53(1):138-153.
[2] Park KS, Nam JH, Choi J. The short vitamin D receptor is associated with increased risk for generalized aggressive periodontitis[J]. J Clin Periodontol, 2006,33(8):524-528.
[3] Li S, Yang MH, Zeng CA, et al. Association of vitamin D receptor gene polymorphisms in Chinese patients with generalized aggressive periodontitis[J]. J Periodontal Res, 2008,43(3):360-363.
[4] McNamara CM, Garvey MT, Winter GB. Root abnormalities, talon cusps, dens invaginati with reduced alveolar bone levels: case report[J]. Int J Paediatr Dent, 1998,8(1):41-45.
[5] 梁鑫. 人类牙根发育异常疾病概述[J]. 中华口腔医学杂志, 2019,54(11):783-787.
[6] 徐莉, 孟焕新, 田雨, 等. 侵袭性牙周炎患者牙根形态异常的观察[J]. 中华口腔医学杂志, 2009,44(5):266-269.
[7] 乔敏, 徐莉, 孟焕新, 等. 侵袭性牙周炎核心家系牙槽骨吸收和牙根形态的遗传度分析[J]. 中华口腔医学杂志, 2013,48(10):577-580.
[8] 孟焕新, 曹采方, 和璐, 等. 临床牙周病学[M].2版. 北京: 北京大学医学出版社, 2014: 95-99.
[9] Puthiyaveetil JSV, Kota K, Chakkarayan R, et al. Epithelial mesenchymal interactions in tooth development and the significant role of growth factors and genes with emphasis on mesenchyme: a review[J]. J Clin Diagn Res, 2016,10(9):5-9.
[10] Huang XF, Chai Y. Molecular regulatory mechanism of tooth root development[J]. Int J Oral Sci, 2012,4(4):177-181.
[11] Li JY, Parada G, Yang G. Cellular and molecular mechanisms of tooth root development[J]. Development, 2017,144(3):374-384.
[12] Jia SH, Edward KHJ, Lan Y, et al. Bmp4-Msx1 signaling and Osr2 control tooth organogenesis through antagonistic regulation of secreted Wnt antagonists[J]. Developmental Biology, 2016,420(1):110-119.
[13] Vaahtokari A, Aberg T, Thesleff I. Apoptosis in the developing tooth: association with an embryonic signaling center and suppression by EGF and FGF-4[J]. Development, 1996,122(1):121-129.
[14] Guo T, Cao G, Liu BY, et al. Cbfα1 hinders autophagy by DSPP upregulation in odontoblast differentiation[J]. Int J Biochem Cell Biol, 2019,115(10):78-89.
[15] Balic A, Thesleff I. Tissue interactions regulating tooth development and renewal[J]. Curr Top Dev Biol, 2015,115:157-186.
[16] Hanna AE, Sanjad S, Andary R, et al. Tooth development associated with mutations in hereditary vitamin D-resistant rickets[J]. Clin Trans Res, 2018,3(1):28-34.
[17] Mallek HM, Nakamoto T, Nuchtern E, et al. The effect of calcitonin in vitro on tooth germs in protein-energy malnourished rats[J]. J Dent Res, 1979,58(9):1921-1925.
[18] Sakakura Y, Iida S, Ishizeki K, et al. Ultrastructure of the effects of calcitonin on the development of mouse tooth germs in vitro[J]. Arch Oral Biol, 1984,29(7):507-512.
[19] 张瑞, 黄晓峰, 张方明, 等. Nfic在牙根发育中作用的研究[J]. 北京口腔医学, 2013,21(3):121-124.
[20] Steele-Perkins G, Butz KG, Lyons GE, et al. Essential role for NFI-C/CTF transcription-replication factor in tooth root development.[J]. Mol Cell Biol, 2003,23(3):1075-1084.
[21] Huang H, Wang J, Zhang Y, et al. Bone resorption deficiency affects tooth root development in RANKL mutant mice due to attenuated IGF-1 signaling in radicular odontoblasts[J]. Bone, 2018,114:161-171.
[22] Zhang R, Yang G, Wu X, et al. Disruption of Wnt/β-catenin signaling in odontoblasts and cementoblasts arrests tooth root development in postnatal mouse teeth[J]. Int J Biol Sci, 2013,9(3):228-236.
[23] Chen HM, Guo SY, Xia Y, et al. The role of Rho-GEF Trio in regulating tooth root development through the p38 MAPK pathway[J]. Exp Cell Res, 2018,372(2):158-167.
[24] 张宇凝, 王骏周, 陈晨. 牙根发育调控机制的研究进展[J]. 中华口腔医学杂志, 2020,55(8):591-594.
[25] LV D, Meng HX, Xu L, et al. Root abnormalities and nonsurgical management of generalized, aggressive periodontitis[J]. J Oral Sci, 2017,59(1):1-8.
[26] 田雨, 徐莉, 孟焕新, 等. 单根牙牙根表面积的测量与估算[J]. 北京大学学报(医学版), 2009,44(1):32-35.
[27] Berdal A, Hotton D, Pike JW, et al. Cell- and stage-specific expression of vitamin D receptor and calbindin genes in rat incisor: regulation by 1,25-dihydroxyvitamin D3[J]. Dev Biol, 1993,155(1):172-179.
[28] Papagerakis P. Differential epithelial and mesenchymal regulation of tooth-specific matrix protein sexpression by 1, 25-dihydroxyvitamin D3 in vivo[J]. Connect Tissue Res, 2002,43(2/3):372-375.
[29] Onishi T. Relationship of vitamin D with calbindin D9k and D28k expression in ameloblasts.[J]. Arch Oral Biol, 2008,53(2):117-123.
[30] Bailleul-Forestier I, Davideau JL, Papagerakis P, et al. Immunolocalization of vitamin D receptor and calbindin-D28k in human tooth germ[J]. Pediatr Res, 1996,39(4):636-642.
[31] Botelho J, Machado V, Proen?a L, et al. Vitamin D deficiency and oral health: a comprehensive review[J]. Nutrients, 2020,12(5):1471-1487.
[32] 李媛媛, 崔凌凌, 李鑫, 等. 中国汉族男性原发性痛风与维生素D受体基因rs2228570多态性的遗传易感性研究[J]. 中华内分泌代谢杂志, 2015,31(4):316-319.
[33] Gross C, Eccleshall TR, Malloy PJ, et al. The presence of a polymorphism at the translation initiation site of the vitamin D receptor gene is associated with low bone mineral density in postmenopausal Mexican-American women[J]. J Bone Miner Res, 1996,11(12):1850-1855.
[34] Gross C, Krishnan AV, Malloy PJ, et al. The vitamin D receptor gene start codon polymorphism: A functional analysis of FokI variants[J]. J Bone Miner Res, 1998,13(11):1691-1699.
[35] Egan JB, Thompson PA, Vitanov MV, et al. Vitamin D receptor ligands, adenomatous polyposis coli, and the vitamin D receptor FokI polymorphism collectively modulate beta-catenin activity in colon cancer cells[J]. Mol Carcinogen, 2010,49(4):337-352.
[36] Alimirah F, Peng XJ, Murillo G, et al. Functional significance of vitamin D receptor FokI polymorphismin human breast cancer cells[J]. PLoS One, 2011,6(1):e16024.
[37] Liu K, Han B, Meng HX, et al. Influence of rs2228570 on transcriptional activation by the vitamin D receptor in human gingival fibroblasts and periodontal ligament cells[J]. J Clin Periodontol, 2017,88(9):1-19.
[38] Li S, Yang MH, Zeng CA, et al. Association of vitamin D receptor gene polymorphisms in Chinese patients with generalized aggressive periodontitis[J]. J Periodontal Res, 2008,43(3):360-363.
[39] Xiong DH, Shen H, Zhao LJ, et al. Robust and comprehensive analysis of 20 osteoporosis candidate genes by very high-density single-nucleotide polymorphism screen among 405 white nuclear families identified significant association and gene-gene interaction[J]. J Bone Miner Res, 2006,21(11):1678-1695.
[40] Lawrence AW, Mary EF, Zheng YX, et al. In vitro characterization of a human calcitonin receptor gene polymorphism[J]. Mutat Res Fund Mol M, 2003,522(1/2):93-105.
[41] Giroux S, Elfassihi L, Clément V, et al. High-density polymorphisms analysis of 23 candidate genes for association with bone mineral density[J]. Bone, 2010,47(5):975-981.
[42] Yanovich R, Friedman E, Milgrom R, et al. Candidate gene ana-lysis in israeli soldiers with stress fractures[J]. J Sports Sci Med, 2012,11(1):147-155.
文章导航

/