收稿日期: 2020-10-10
网络出版日期: 2021-02-07
基金资助
国家自然科学基金(81970902);国家自然科学基金(81600846)
Detection of EDA gene mutation and phenotypic analysis in patients with hypohidrotic ectodermal dysplasia
Received date: 2020-10-10
Online published: 2021-02-07
Supported by
National Natural Science Foundation of China(81970902);National Natural Science Foundation of China(81600846)
目的: 在少汗性外胚层发育不良(hypohidrotic ectodermal dysplasia,HED)患者中检测ectodysplasin A(EDA)基因突变,汇总并分析携带EDA基因突变的HED患者的缺失恒牙分布特点及全身临床表现。方法: 对临床收集到的12个HED家系进行遗传病史采集、全身系统性检查和口内检查,通过采集先证者及其家族成员的外周静脉血或唾液样本,提取基因组DNA,聚合酶链式反应(polymerase chain reaction,PCR)扩增EDA基因编码区并进行Sanger测序,与正常人群的EDA基因序列(NM_001399.5)进行比对,筛查突变。利用突变功能预测、保守性分析、蛋白结构预测分析突变的功能影响,根据《美国医学遗传学和基因组学会遗传变异致病性分级指南》评估突变的致病性。总结EDA基因突变的HED患者的全身表型、缺失恒牙牙位,对比分析不同牙位缺失率的差异。结果: 在12个HED家系中发现8个家系分别携带8个EDA基因突变:c.164T>C(p.Leu55Pro)、c.457C>T(p.Arg153Cys)、c.466C>T(p.Arg156Cys)、c.584G>A(p.Gly195Glu)、c.619delG(p.Gly207Profs*73)、c.673C>T(p.Pro225Ser)、c.676C>T(p.Gln226*)和c.905T>G(p.Phe302Cys),其中,c.164T>C(p.Leu55Pro)、c.619delG(p.Gly207Profs*73)、c.673C>T(p.Pro225Ser)、c.676C>T(p.Gln226*)和 c.905T>G(p.Phe302Cys)为新检出的突变。本研究发现的EDA基因突变的HED患者均为男性,其平均缺失恒牙数目为(13.86±4.49)颗,其中上颌平均缺失恒牙数目为(13.14±5.76)颗,缺失率为73.02%,下颌平均缺失恒牙数目为(14.57±3.05)颗,缺失率为80.95%。牙列左、右侧同名牙缺失数目差异无统计学意义(P>0.05)。上颌侧切牙、上颌第二前磨牙和下颌侧切牙缺失率高,而上颌中切牙、上颌第一磨牙和下颌第一磨牙缺失率低。结论: 本研究在HED患者中检测出EDA基因致病突变,总结EDA基因突变的HED患者缺失恒牙规律,丰富了HED患者的EDA基因突变谱和表型谱,为遗传诊断和产前咨询提供了新的证据。
关键词: 少汗性外胚层发育不良; 先天性缺牙; EDA基因; 基因突变
吴君怡 , 余淼 , 孙仕晨 , 樊壮壮 , 郑静蕾 , 张刘陶 , 冯海兰 , 刘洋 , 韩冬 . 少汗性外胚层发育不良患者EDA基因突变检测及表型分析[J]. 北京大学学报(医学版), 2021 , 53(1) : 24 -33 . DOI: 10.19723/j.issn.1671-167X.2021.01.005
Objective: To detect the ectodysplasin A (EDA) gene mutation in patients with hypohidro-tic ectodermal dysplasia (HED), and to analyze the distribution pattern of missing permanent teeth and the systemic manifestation of HED patients with EDA gene mutation.Methods: Twelve HED families were enrolled from clinic for genetic history collection, systemic physical examination and oral examination. Peripheral blood or saliva samples were collected from the probands and the family members to extract genomic DNA. PCR amplification and Sanger sequencing were utilized to detect the EDA gene variations, which were compared with the normal sequence (NM_001399.5). The functional impact of EDA gene variants was then evaluated by functional prediction of mutation, conservation analysis and protein structure prediction. The pathogenicity of each EDA gene variation was assessed according to the stan-dards and guidelines of the American College of Medical Genetics and Genomics (ACMG). The systemic phenotype and missing permanent tooth sites of HED patients with EDA gene mutations were summarized, and the missing rate of each tooth position was analyzed and compared.Results: Eight out of twelve HED families were identified to carry EDA gene mutations, including: c.164T>C(p.Leu55Pro); c.457C>T(p.Arg153Cys); c.466C>T(p.Arg156Cys); c. 584G>A(p.Gly195Glu); c.619delG(p.Gly207Profs*73); c.673C>T(p.Pro225Ser); c.676C>T(p.Gln226*) and c.905T>G(p.Phe302Cys). Among them, c.164T>C(p.Leu55Pro); c.619delG(p.Gly207Profs*73); c.673C>T(p.Pro225Ser); c.676C>T(p.Gln226*) and c.905T>G(p.Phe302Cys) were novel mutations. The HED patients with EDA gene mutations in this study were all male. Our results showed that the average number of missing permanent teeth was 13.86±4.49, the average number of missing permanent teeth in the upper jaw was 13.14±5.76, the missing rate was 73.02%. And in the lower jaw, the average number of missing permanent teeth was 14.57±3.05, the missing rate was 80.95%. There was no significant difference in the number of missing teeth between the left and right sides of the permanent dentition (P>0.05). Specifi-cally, the maxillary lateral incisors, the maxillary second premolars and the mandibular lateral incisors were more likely to be missing, while the maxillary central incisors, the maxillary and mandibular first molars had higher possibility of persistence.Conclusion: This study detected novel EDA gene pathogenic variants and summarized the distribution pattern of missing permanent teeth of HED patients, thus enriched the variation and phenotype spectrum of EDA gene, and provided new clinical evidence for genetic diagnosis and prenatal consultation.
Key words: Hypohidrotic ectodermal dysplasia; Tooth agenesis; EDA gene; Gene mutation
| [1] | Chandravanshi SL. Hypohidrotic ectodermal dysplasia: a case report[J]. Orbit, 2020,39(4):298-301. |
| [2] | Anbouba GM, Carmany EP, Natoli JL. The characterization of hypodontia, hypohidrosis, and hypotrichosis associated with X-linked hypohidrotic ectodermal dysplasia: A systematic review[J]. Am J Med Genet A, 2020,182(4):831-841. |
| [3] | Noriega-Juárez MA, García-Delgado C, Villase?or-Domínguez A, et al. X-linked hypohidrotic ectodermal dysplasia by a de novo recurrent variant in a Mexican patient[J]. Bol Med Hosp Infant Mex, 2020,77(4):212-217. |
| [4] | Abdulla AM, Almaliki AY, Shakeela NV, et al. Prosthodontic management of a pediatric patient with Christ-Siemens-Touraine Syndrome: a case report[J]. Int J Clin Pediatr Dent, 2019,12(6):569-572. |
| [5] | Martínez-Romero MC, Ballesta-Martínez MJ, López-González V, et al. EDA, EDAR, EDARADD and WNT10A allelic variants in patients with ectodermal derivative impairment in the Spanish population[J]. Orphanet J Rare Dis, 2019,14(1):281. |
| [6] | Park JS, Ko JM, Chae JH. Novel and private EDA mutations and clinical phenotypes of Korean patients with X-Linked hypohidrotic ectodermal dysplasia[J]. Cytogenet Genome Res, 2019,158(1):1-9. |
| [7] | Monreal AW, Ferguson BM, Headon DJ, et al. Mutations in the human homologue of mouse dl cause autosomal recessive and dominant hypohidrotic ectodermal dysplasia[J]. Nat Genet, 1999,22(4):366-369. |
| [8] | Srivastava AK, Pispa J, Hartung AJ, et al. The tabby phenotype is caused by mutation in a mouse homologue of the EDA gene that reveals novel mouse and human exons and encodes a protein (ectodysplasin-A) with collagenous domains[J]. Proc Natl Acad Sci USA, 1997,94(24):13069-13074. |
| [9] | Ezer S, Bayés M, Elomaa O, et al. Ectodysplasin is a collagenous trimeric type Ⅱ membrane protein with a tumor necrosis factor-like domain and co-localizes with cytoskeletal structures at lateral and apical surfaces of cells[J]. Hum Mol Genet, 1999,8(11):2079-2086. |
| [10] | Schneider P, Street SL, Gaide O, et al. Mutations leading to X-linked hypohidrotic ectodermal dysplasia affect three major functional domains in the tumor necrosis factor family member ectodysplasin-A[J]. J Biol Chem, 2001,276(22):18819-18827. |
| [11] | Huang SX, Liang JL, Sui WG, et al. EDA mutation as a cause of hypohidrotic ectodermal dysplasia: a case report and review of the literature[J]. Genet Mol Res, 2015,14(3):10344-10351. |
| [12] | Li SM, Zhou J, Zhang LY, et al. Ectodysplasin A regulates epithelial barrier function through sonic hedgehog signalling pathway[J]. J Cell Mol Med, 2018,22(1):230-240. |
| [13] | Yamada A, Kawasaki M, Miake Y, et al. Overactivation of the NF-κB pathway impairs molar enamel formation[J]. Oral Dis, 2020,26(7):1513-1522. |
| [14] | Lévy J, Capri Y, Rachid M, et al. LEF1 haploinsufficiency causes ectodermal dysplasia[J]. Clin Genet, 2020,97(4):595-600. |
| [15] | Song SJ, Han D, Qu H, et al. EDA gene mutations underlie non-syndromic oligodontia[J]. J Dent Res, 2009,88(2):126-131. |
| [16] | Han Y, Wang XL, Zheng LY, et al. Pathogenic EDA mutations in Chinese Han families with hypohidrotic ectodermal dysplasia and genotype-phenotype: a correlation analysis[J]. Front Genet, 2020,11(21):1-11. |
| [17] | Reyes-Reali J, Mendoza-Ramos MI, Garrido-Guerrero E, et al. Hypohidrotic ectodermal dysplasia: clinical and molecular review[J]. Int J Dermatol, 2018,57(8):965-972. |
| [18] | Zhao J, Hua R, Zhao X, et al. Three novel mutations of the EDA gene in Chinese patients with X-linked hypohidrotic ectodermal dysplasia[J]. Br J Dermatol, 2008,158(3):614-617. |
| [19] | Kowalczyk-Quintas C, Schneider P. Ectodysplasin A (EDA)-EDA receptor signalling and its pharmacological modulation[J]. Cytokine Growth Factor Rev, 2014,25(2):195-203. |
| [20] | Savasta S, Carlone G, Castagnoli R, et al. X-Linked hypohidrotic ectodermal dysplasia: new features and a novel EDA gene mutation[J]. Cytogenet Genome Res, 2017,152(3):111-116. |
| [21] | Wahlbuhl M, Schuepbach-Mallepell S, Kowalczyk-Quintas C, et al. Attenuation of mammary gland dysplasia and feeding difficulties in tabby mice by fetal therapy[J]. J Mammary Gland Biol Neoplasia, 2018,23(3):125-138. |
| [22] | Wahlbuhl-Becker M, Faschingbauer F, Beckmann MW, et al. Hypohidrotic ectodermal dysplasia: breastfeeding complications due to impaired breast development[J]. Geburtshilfe Frauen-heilkd, 2017,77(4):377-382. |
| [23] | Wu CT, Morris JR. Genes, genetics, and epigenetics: a cor-respondence[J]. Science, 2001,293(5532):1103-1105. |
| [24] | Zhang J, Han D, Song SJ, et al. Correlation between the phenotypes and genotypes of X-linked hypohidrotic ectodermal dysplasia and non-syndromic hypodontia caused by ectodysplasin-A mutations[J]. Eur J Med Genet, 2011,54(4):e377-382. |
| [25] | Pispa J, Jung HS, Jernvall J, et al. Cusp patterning defect in tabby mouse teeth and its partial rescue by FGF[J]. Dev Biol, 1999,216(2):521-534. |
| [26] | Cluzeau C, Hadj-Rabia S, Jambou M, et al. Only four genes (EDA1, EDAR, EDARADD, and WNT10A) account for 90% of hypohidrotic/anhidrotic ectodermal dysplasia cases[J]. Hum Mutat, 2011,32(1):70-77. |
/
| 〈 |
|
〉 |