论著

两种可吸收生物膜联合去蛋白牛骨基质植入犬拔牙窝成骨的影像学评价

  • 王思雯 ,
  • 尤鹏越 ,
  • 刘玉华 ,
  • 王新知 ,
  • 唐琳 ,
  • 王梅
展开
  • 北京大学口腔医学院·口腔医院,修复科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081

收稿日期: 2019-03-19

  网络出版日期: 2021-04-21

Efficacy of two barrier membranes and deproteinized bovine bone mineral on bone regeneration in extraction sockets: A microcomputed tomographic study in dogs

  • Si-wen WANG ,
  • Peng-yue YOU ,
  • Yu-hua LIU ,
  • Xin-zhi WANG ,
  • Lin TANG ,
  • Mei WANG
Expand
  • Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China

Received date: 2019-03-19

  Online published: 2021-04-21

摘要

目的: 建立犬拔牙窝模型,采用影像学分析方法评价拔牙窝内植入去蛋白牛骨基质骨粉颗粒Bio-Oss®(简称Bio-Oss骨粉)并覆盖复层猪小肠黏膜下层膜(multilaminated small intestinal submucosa membrane, mSIS)或可吸收胶原膜Bio-Gide® (简称Bio-Gide膜), 愈合4周和12周后的牙槽窝内成骨效果。方法: 拔除3只比格犬双侧上下颌共计18颗前磨牙的远中根,得到18个拔牙窝,随机平均分为3大组,并分别对各拔牙窝组进行以下操作:(1)植入Bio-Oss骨粉并覆盖mSIS膜(mSIS组),(2)植入Bio-Oss骨粉并覆盖Bio-Gide膜(BG组),(3)自然愈合(空白对照组)。每大组各随机平均分为2个小组,分别于手术后4周和12周取样进行微计算机体层扫描(micro-computed tomograph, Micro-CT), 检测评价各组牙槽窝内新骨的生长情况,比较mSIS膜和Bio-Gide膜对拔牙窝内骨再生的影响。结果: Micro-CT分析显示,mSIS组和BG组在术后4周和12周的新生骨容积比均显著高于空白对照组(P<0.05),其中mSIS组略高于BG组,但两组间差异无统计学意义(P>0.05)。术后4周mSIS组和BG组的牙槽窝冠1/3区域新生骨容积比例显著高于中1/3及根1/3区域(P<0.05)。术后4周各组的新生骨密度值相近(P>0.05),术后12周时mSIS组和BG组的新生骨密度值均显著高于对照组(P<0.05)。术后4周和12周mSIS组和BG组的新生骨小梁的数量以及排列紧凑程度明显优于空白对照组(P<0.05),而mSIS略优于BG组,但两组间差异无统计学意义(P>0.05)。各组间骨小梁厚度的差异无统计学意义(P>0.05)。结论: 两种屏障膜联合去蛋白牛骨基质植入拔牙窝内有利于新骨再生,mSIS膜与Bio-Gide膜的应用效果相似。

本文引用格式

王思雯 , 尤鹏越 , 刘玉华 , 王新知 , 唐琳 , 王梅 . 两种可吸收生物膜联合去蛋白牛骨基质植入犬拔牙窝成骨的影像学评价[J]. 北京大学学报(医学版), 2021 , 53(2) : 364 -370 . DOI: 10.19723/j.issn.1671-167X.2021.02.022

Abstract

Objective: To evaluate the effect of two barrier membranes [multilaminated small intestinal submucosa (mSIS) and bioresorable collagen membrane (Bio-Gide)] combined with deproteinized bovine bone mineral Bio-Oss on guided bone regeneration through a canine extraction sockets model. Methods: The distal roots of 18 premolars of the Beagle’s bilateral maxillary and mandibular were removed, and 18 extraction sockets were obtained. They were randomly divided into 3 groups, and the following procedures were performed on the sockets: (1) filled with Bio-Oss and covered by mSIS (mSIS group), (2) filled with Bio-Oss and covered by Bio-Gide (BG group), (3) natural healing (blank control group). Micro-computed tomograph (Micro-CT) was performed 4 and 12 weeks after surgery to eva-luate the new bone regeneration in the sockets of each group. Results: The postoperative healing was uneventful in all the animals, and no complications were observed through the whole study period. Micro-CT analysis showed that the new bone fraction in the mSIS group and the BG group was significantly higher than that in the blank control group at the end of 4 weeks and 12 weeks (P<0.05), and more new bone fraction was observed in the mSIS group than in the BG group, but the difference was not statistically significant (P>0.05). The new bone fraction of coronal third part of the socket in the mSIS group and BG group at the end of 4 weeks were significantly higher than that of the middle and apical third part of each group (P<0.05). The values of bone mineral density were similar at 4 weeks in all the groups (P>0.05), but were significantly higher than that in the control group at the end of 12 weeks (P<0.05). The bone morphometric analysis showed that the trabecular number and trabecular spacing were significantly better in the mSIS group and the BG group than in the control group at the end of 4 weeks and 12 weeks (P<0.05), while the value in the mSIS group was slightly higher than in the BG group, but the difference was not statistically significant (P>0.05). The difference in trabecular thickness between all the groups was not statistically significant (P>0.05). Conclusion: mSIS membrane as a barrier membrane combined with deproteinized bovine bone mineral can enhance new bone formation in canine extraction sockets, similar to Bio-Gide collagen membrane.

参考文献

[1] Ersanli S, Olgac V, Leblebicioglu B. Histologic analysis of alveolar bone following guided bone regeneration[J]. J Periodontol, 2004,75(5):750-756.
[2] Chiapasco M, Zaniboni M. Clinical outcomes of GBR procedures to correct peri-implant dehiscences and fenestrations: a systematic review[J]. Clin Oral Implants Res, 2009,20(Suppl 4):113-123.
[3] Oikarinen KS, Sandor GK, Kainulainen VT, et al. Augmentation of the narrow traumatized anterior alveolar ridge to facilitate dental implant placement[J]. Dent Traumatol, 2003,19(1):19-29.
[4] Amler MH. The time sequence of tissue regeneration in human extraction wounds[J]. Oral Surg Oral Med Oral Pathol, 1969,27(3):309-318.
[5] Nyman S, Lang NP, Buser D, et al. Bone regeneration adjacent to titanium dental implants using guided tissue regeneration: a report of two cases[J]. Int J Oral Maxillofac Implants, 1990,5(1):9-14.
[6] MacBeth N, Trullenque-Eriksson A, Donos N, et al. Hard and soft tissue changes following alveolar ridge preservation: a syste-matic review[J]. Clin Oral Implants Res, 2017,28(8):982-1004.
[7] 詹雅琳, 胡文杰, 甄敏, 等. 去蛋白牛骨基质与可吸收胶原膜的磨牙拔牙位点保存效果影像学评价[J]. 北京大学学报(医学版), 2015,47(1):19-26.
[8] Kim JJ, Schwarz F, Song HY, et al. Ridge preservation of extraction sockets with chronic pathology using Bio-Gide® Collagen with or without collagen membrane: an experimental study in dogs[J]. Clin Oral Implants Res, 2017,28(6):727-733.
[9] Wu W, Li B, Liu Y, et al. Effect of multilaminate small intestinal submucosa as a barrier membrane on bone formation in a rabbit mandible defect model[J]. Biomed Res Int, 2018,2018:3270293.
[10] 吴唯伊, 李博文, 刘玉华, 等. 复层猪小肠黏膜下层可吸收膜的降解性能[J]. 北京大学学报(医学版), 2020,52(3):564-569.
[11] Eitel F, Klapp F, Jacobson W, et al. Bone regeneration in animals and in man. A contribution to understanding the relative value of animal experiments to human pathophysiology[J]. Arch Orthop Trauma Surg, 1981,99(1):59-64.
[12] Lindhe J, Araujo MG, Bufler M, et al. Biphasic alloplastic graft used to preserve the dimension of the edentulous ridge: an experimental study in the dog[J]. Clin Oral Implants Res, 2013,24(10):1158-1163.
[13] Naenni N, Sapata V, Bienz SP, et al. Effect of flapless ridge preservation with two different alloplastic materials in sockets with buccal dehiscence defects-volumetric and linear changes[J]. Clin Oral Investig, 2018,22(6):2187-2197.
[14] 詹雅琳, 胡文杰, 徐涛, 等. 罹患重度牙周炎磨牙拔除后应用去蛋白牛骨基质与可吸收胶原膜进行位点保存的组织学研究[J]. 北京大学学报(医学版), 2017,49(1):169-175.
[15] Benic GI, Thoma DS, Sanz-Martin I, et al. Guided bone regene-ration at zirconia and titanium dental implants: a pilot histological investigation[J]. Clin Oral Implants Res, 2017,28(12):1592-1599.
[16] Wang F, Li Q, Wang Z. A comparative study of the effect of Bio-Gide® in combination with concentrated growth factors or bone marrow-derived mesenchymal stem cells in canine sinus grafting[J]. J Oral Pathol Med, 2017,46(7):528-536.
[17] Turri A, Elgali I, Vazirisani F, et al. Guided bone regeneration is promoted by the molecular events in the membrane compartment[J]. Biomaterials, 2016,84:167-183.
[18] Bouxsein ML, Boyd SK, Christiansen BA, et al. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography[J]. J Bone Miner Res, 2010,25(7):1468-1486.
[19] Leventis M, Fairbairn P, Mangham C, et al. Bone healing in rabbit calvaria defects using a synthetic bone substitute: A histological and micro-CT comparative study[J]. Materials (Basel), 2018,11(10):1-13.
[20] Sun Y, Wang CY, Wang ZY, et al. Test in canine extraction site preservations by using mineralized collagen plug with or without membrane[J]. J Biomater Appl, 2016,30(9):1285-1299.
[21] Omar O, Dahlin A, Gasser A, et al. Tissue dynamics and rege-nerative outcome in two resorbable non-cross-linked collagen memb-ranes for guided bone regeneration: A preclinical molecular and histological study in vivo[J]. Clin Oral Implants Res, 2018,29(1):7-19.
文章导航

/