论著

基于磁共振的青年男性股四头肌的测量和评估

  • 吴一凡 ,
  • 张晓圆 ,
  • 任爽 ,
  • 玉应香 ,
  • 常翠青
展开
  • 北京大学第三医院运动医学科,北京大学运动医学研究所,运动医学关节伤病北京市重点实验室,北京 100191

收稿日期: 2021-06-04

  网络出版日期: 2021-10-11

基金资助

国家重点研发计划项目(2019YFF0301700);国家体育总局重点研究项目(2014B003)

Measurement and evaluation of the quadriceps muscle mass in young men based on magnetic resonance imaging

  • Yi-fan WU ,
  • Xiao-yuan ZHANG ,
  • Shuang REN ,
  • Ying-xiang YU ,
  • Cui-qing CHANG
Expand
  • Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing Key Laboratory of Sports Injuries, Beijing 100191, China

Received date: 2021-06-04

  Online published: 2021-10-11

摘要

目的: 通过观测髌骨上缘不同水平位置股四头肌横截面积(cross-sectional area,CSA)与体积(quadriceps muscle volume,QMV)的相关性,探讨评估股四头肌肌肉参数的最佳测量位置。方法: 对22例单侧前交叉韧带(anterior cruciate ligament,ACL)断裂男性患者行双侧大腿磁共振成像检查,患者平均年龄(29±6)岁,分别选取髌骨上缘18、15和12 cm处,利用半自动分割和医学影像处理软件确定QMV和各水平位置CSA。通过拟合回归方程建立模型估计QMV,采用Bland-Altman分析评价两者之间的一致性。结果: 受试者健侧QMV平均为(1 944.45±323.77) cm3。髌骨上缘18、15和12 cm处的股四头肌CSA分别为(80.80±12.16) cm2、(77.53±12.03) cm2和(72.68±10.51) cm2,拟合方程R2分别为0.819、0.755、0.684(P均<0.001),QMV估计值的标准误(standard error of the estimate,SEE)分别为7.4%、8.7%、9.8%(以体积的百分比表示)。三个水平位置的拟合方程均较好,但以髌骨上缘18 cm处的拟合度最高。Bland-Altman散点图结果显示,髌骨上缘18、15和12 cm处的QMV差值平均值分别为0.8 cm3、-1.1 cm3、0.9 cm3,95%一致性界限分别为(-268.8, 270.5)、(-315.2, 313.1)、(-355.7, 357.5),髌骨上缘18 cm处QMV的估计值与实测值一致性最好,患侧与健侧结果一致。结论: 以髌骨上缘作为基线探讨青年男性QMV与CSA的相关性具有可靠性和一致性,其中以髌骨上缘18 cm处的股四头肌CSA与QMV的相关性最好,但对于股四头肌的不同损伤部位,可选择不同观测位置。

本文引用格式

吴一凡 , 张晓圆 , 任爽 , 玉应香 , 常翠青 . 基于磁共振的青年男性股四头肌的测量和评估[J]. 北京大学学报(医学版), 2021 , 53(5) : 843 -849 . DOI: 10.19723/j.issn.1671-167X.2021.05.006

Abstract

Objective: To investigate the correlation between the quadriceps cross-sectional area (CSA) and quadriceps muscle volume (QMV) at different horizontal levels from the upper edge of the patella, and to determine the best observation position. Methods: Thigh magnetic resonance imaging (MRI) images of 22 Chinese young men [age: (29±6) years] with anterior cruciate ligament (ACL) rupture were examined. The CSA was measured at 18, 15, and 12 cm above the upper edge of the pate-lla (denoted by CSA-18, CSA-15 and CSA-12 respectively), and the QMV and CSA were determined by semiautomatic segmentation. A curve model was established to estimate QMV. Bland-Altman analysis was performed to determine the confidence limits of the volumes. Results: On the unaffected side, the mean QMV was (1 944.45±323.77) cm3. The quadriceps CSA at the upper edge of the patella at 18, 15, and 12 cm was (80.80±12.16) cm2, (77.53±12.03) cm2, and (72.68±10.51) cm2, respectively. The coefficients of determination (R2), ascertained using curve estimation models, for the 3 positions were 0.819, 0.755, and 0.684 (P<0.001), and the standard deviations of the volume estimated value (SEE) were 7.4%, 8.7%, and 9.8%. The fitting equations of the three horizontal positions were all good, but the fitting degree of CSA-18 was the highest. The Bland-Altman scatter plot showed that the arithmetic means of the QMV at 18, 15 and 12 cm from the upper edge of the patella 0.8 cm3, -1.1 cm3, and 0.9 cm3 and 95% limits of agreement (LoA) were (-268.8, 270.5), (-315.2, 313.1), and (-355.7, 357.5), respectively. The estimated QMV was in good agreement with the measured value. The difference between the estimated CSA-18 and measured values was the smallest. The results on the affected side were consistent. Conclusion: The correlation between QMV and CSA in the young men with the upper edge of patella as baseline was reliable and consistent. Among them, CSA-18 had the highest correlation with the QMV. However, different observation sites could be selected for different injuries of the quadriceps.

参考文献

[1] Francis P, Lyons M, Piasecki M, et al. Measurement of muscle health in aging [J]. Biogerontology, 2017, 18(6):901-911.
[2] Leenders M, Verdijk LB, van der Hoeven L, et al. Prolonged leucine supplementation does not augment muscle mass or affect glycemic control in elderly type 2 diabetic men [J]. J Nutr, 2011, 141(6):1070-1076.
[3] Wang SY, Shamliyan TA, Talley KM, et al. Not just specific diseases: Systematic review of the association of geriatric syndromes with hospitalization or nursing home admission [J]. Arch Gerontol Geriatr, 2013, 57(1):16-26.
[4] Cai W, Gao L, Li L, et al. Epidemiology of physical activity-related injuries in Chinese university students [J]. Scand J Med Sci Sports, 2019, 29(9):1331-1339.
[5] Gao Y, Cai W, Gao L, et al. Physical activity-related injuries among university students: A multicentre cross-sectional study in China [J]. BMJ Open, 2018, 8(9):e021845.
[6] Birchmeier T, Lisee C, Kane K, et al. Quadriceps muscle size following ACL injury and reconstruction: A systematic review [J]. J Orthop Res, 2020, 38(3):598-608.
[7] Lindstrom M, Strandberg S, Wredmark T, et al. Functional and muscle morphometric effects of ACL reconstruction. A prospective CT study with 1 year follow-up [J]. Scand J Med Sci Sports, 2013, 23(4):431-442.
[8] Williams GN, Snyder-Mackler L, Barrance PJ, et al. Quadriceps femoris muscle morphology and function after ACL injury: A diffe-rential response in copers versus non-copers [J]. J Biomech, 2005, 38(4):685-693.
[9] Young A, Stokes M, Crowe M. The size and strength of the qua-driceps muscles of old and young men [J]. Clin Physiol, 1985, 5(2):145-154.
[10] Thomas AC, Wojtys EM, Brandon C, et al. Muscle atrophy contributes to quadriceps weakness after anterior cruciate ligament reconstruction [J]. J Sci Med Sport, 2016, 19(1):7-11.
[11] Pons C, Borotikar B, Garetier M, et al. Quantifying skeletal muscle volume and shape in humans using MRI: A systematic review of validity and reliability [J]. PLoS One, 2018, 13(11):e0207847.
[12] Barnouin Y, Butler-Browne G, Voit T, et al. Manual segmentation of individual muscles of the quadriceps femoris using MRI: A reappraisal [J]. J Magn Reson Imaging, 2014, 40(1):239-247.
[13] Holzbaur KR, Murray WM, Gold GE, et al. Upper limb muscle volumes in adult subjects [J]. J Biomech, 2007, 40(4):742-749.
[14] Mersmann F, Bohm S, Schroll A, et al. Muscle shape consistency and muscle volume prediction of thigh muscles [J]. Scand J Med Sci Sports, 2015, 25(2):e208-e213.
[15] Strandberg S, Wretling ML, Wredmark T, et al. Reliability of computed tomography measurements in assessment of thigh muscle cross-sectional area and attenuation [J]. BMC Med Imaging, 2010(10):18.
[16] 甄希成, 陈新, 白巍. 传统按摩结合持续被动运动训练对脑卒中患者股四头肌横截面积的影响研究 [J]. 中国全科医学, 2012, 15(29):3366-3368.
[17] Morse CI, Degens H, Jones DA. The validity of estimating quadriceps volume from single MRI cross-sections in young men [J]. Eur J Appl Physiol, 2007, 100(3):267-274.
[18] Zhang X, Huang H, Yu Y, et al. Impact of whey protein isolate and eccentric training on quadriceps mass and strength in patients with anterior cruciate ligament rupture: A randomized controlled trial [J]. J Rehabil Med, 2020, 52(3):jrm00035.
[19] Marcon M, Ciritsis B, Laux C, et al. Cross-sectional area mea-surements versus volumetric assessment of the quadriceps femoris muscle in patients with anterior cruciate ligament reconstructions [J]. Eur Radiol, 2015, 25(2):290-298.
[20] Strandberg S, Lindstrom M, Wretling ML, et al. Muscle morphometric effect of anterior cruciate ligament injury measured by computed tomography: Aspects on using non-injured leg as control [J]. BMC Musculoskelet Disord, 2013(14):150.
[21] Yang YX, Chong MS, Lim WS, et al. Validity of estimating muscle and fat volume from a single MRI section in older adults with sarcopenia and sarcopenic obesity [J]. Clin Radiol, 2017, 72(5):427.e9-427.e14.
[22] Yamauchi K, Yoshiko A, Suzuki S, et al. Estimation of indivi-dual thigh muscle volumes from a single-slice muscle cross-sectional area and muscle thickness using magnetic resonance imaging in patients with knee osteoarthritis [J]. J Orthop Surg (Hong Kong), 2017, 25(3):2309499017743101.
[23] Yamauchi K, Suzuki S, Kato C, et al. Atrophy of individual thigh muscles measured by MRI in older adults with knee osteoarthritis: A cross-sectional study [J]. Ann Phys Rehabil Med, 2020, 63(1):38-45.
[24] 师东良, 王宁华, 谢斌. 膝骨关节炎患者与正常人股内侧肌、股直肌和股外侧肌收缩特征的对照研究 [J]. 中国康复理论与实践, 2009, 15(6):508-513.
[25] Macleod TD, Snyder-Mackler L, Buchanan TS. Differences in neuromuscular control and quadriceps morphology between potential copers and noncopers following anterior cruciate ligament injury [J]. J Orthop Sports Phys Ther, 2014, 44(2):76-84.
[26] Henninger HB, Christensen GV, Taylor CE, et al. The muscle cross-sectional area on MRI of the shoulder can predict muscle volume: An MRI study in Cadavers [J]. Clin Orthop Relat Res, 2020, 478(4):871-883.
[27] Tomlinson OW, Barker AR, Fulford J, et al. Quantification of thigh muscle volume in children and adolescents using magnetic resonance imaging [J]. Eur J Sport Sci, 2020, 20(9):1215-1224.
[28] Nakatani M, Takai Y, Akagi R, et al. Validity of muscle thickness-based prediction equation for quadriceps femoris volume in middle-aged and older men and women [J]. Eur J Appl Physiol, 2016, 116(11/12):2125-2133.
文章导航

/