论著

酸刺激对腮腺和下颌下腺唾液流率及成分的影响

  • 陈超伦 ,
  • 苏家增 ,
  • 俞光岩
展开
  • 北京大学口腔医学院·口腔医院口腔颌面外科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔数字化医疗技术和材料国家工程实验室,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,国家药品监督管理局口腔生物材料重点实验室,北京 100081

收稿日期: 2021-10-09

  网络出版日期: 2022-02-21

基金资助

国家自然科学基金(81974151);国家自然科学基金(82081240420);国家自然科学基金(82170977)

Effects of acid stimulation on saliva flow rate and compositions of human parotid and submandibular glands

  • Chao-lun CHEN ,
  • Jia-zeng SU ,
  • Guang-yan YU
Expand
  • Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China

Received date: 2021-10-09

  Online published: 2022-02-21

Supported by

National Natural Science Foundation of China(81974151);National Natural Science Foundation of China(82081240420);National Natural Science Foundation of China(82170977)

摘要

目的: 探讨酸刺激对腮腺和下颌下腺唾液流率及成分的影响,为全面评估健康和疾病状态时的唾液腺功能提供依据。方法: 采用自然留取法收集210名健康志愿者在静息状态下的全唾液,负压吸引法收集腮腺、下颌下腺分泌液; 2%柠檬酸每间隔1 min滴于舌尖进行酸刺激,共5次,收集酸刺激状态下全唾液、腮腺及下颌下腺分泌液,称量计算各项唾液流率。生化分析仪检测唾液样本的K+、Na+、Cl-、Ca2+、总蛋白、总磷浓度及α-淀粉酶水平,对比分析不同类别唾液流率及成分的变化特点。结果: 与静息状态检测结果相比较,酸刺激后腮腺唾液流率增加的倍数(10.7倍)大于下颌下腺(2.9倍);腮腺唾液中的Na+、Cl-、Ca2+、总蛋白和α-淀粉酶浓度明显升高(P<0.05), 总磷、K+差异无统计学意义(P=0.89,P=0.34);下颌下腺唾液中的Na+和Ca2+浓度显著升高(P<0.05), 总磷浓度显著降低(P<0.05), Cl-浓度升高,但差异无统计学意义(P=0.068), 总蛋白、K+和α-淀粉酶差异无统计学意义(P=0.85,P=0.07,P=0.95)。下颌下腺唾液中总磷的复合分泌速率不变(P=0.066), K+、Na+、Cl-、Ca2+、总蛋白、α-淀粉酶分泌速率升高(P<0.01)。腮腺唾液中K+、Na+、Cl-、Ca2+、总蛋白、总磷及α-淀粉酶的复合分泌速率均升高(P<0.01)。腮腺唾液中Na+、Cl-、K+、总磷、总蛋白、α-淀粉酶浓度高于下颌下腺(P<0.01),下颌下腺唾液中Ca2+浓度显著高于腮腺(P<0.001)。结论: 腮腺对酸刺激的反应更为强烈,下颌下腺分泌较为稳定; 酸刺激明显影响唾液中电解质的浓度,复合分泌速率是同时反映唾液流率和成分浓度的评价指标; 腮腺在唾液总蛋白、总磷和α-淀粉酶的分泌过程中起重要作用,而下颌下腺是唾液中Ca2+的主要来源。

本文引用格式

陈超伦 , 苏家增 , 俞光岩 . 酸刺激对腮腺和下颌下腺唾液流率及成分的影响[J]. 北京大学学报(医学版), 2022 , 54(1) : 89 -94 . DOI: 10.19723/j.issn.1671-167X.2022.01.014

Abstract

Objective: To investigate the effect of acid stimulation on salivary flow rate and compositions of human parotid and submandibular glands, so as to provide basis for comprehensive evaluation of salivary gland function in both health and disease status. Methods: In the study, 210 healthy participants’ whole saliva samples were collected under passive drooling, and their parotid gland and submandibular gland secretions were collected by negative pressure suction. 2% citric acid was dropped on the tip of tongue every 1 min for acid stimulation for a total of 5 times to collect stimulated whole saliva, parotid and submandibular gland saliva. The collected saliva was weighed and saliva flow rate was calculated. The K+, Na+, Cl-, Ca2+, total protein, total phosphorus and α-amylase in saliva samples were detected by biochemical analyzer, and the changing features of flow rate and compositions of different kinds of saliva were compared and analyzed. Results: After acid stimulation, saliva flow rate significantly increased. The increase proportion of parotid gland saliva (10.7 folds) was much higher than that of submandibular gland saliva (2.9 folds). The concentrations of Na +, Cl-, Ca2+, total protein and α-amylase in parotid gland saliva increased significantly (P<0.05), but there was no significant difference in total phosphorus and K + (P=0.89,P=0.34). The concentration of Na+ and Ca2+ in saliva of submandibular gland increased significantly(P<0.05), the concentration of total phosphorus decreased significantly(P<0.05), and the concentration of Cl- increased, but the difference was not significant(P=0.068). There was no significant difference in total protein, K+ and α-amylase (P=0.85,P=0.07,P=0.95). The compound secretion rate of total phosphorus in saliva of submandibular gland remained unchanged(P=0.066), while the secretion rate of K +, Na+, Cl-, Ca2+, total protein and α-amylase significantly increased(P<0.01). The compound secretion rate of K +, Na+, Cl-, Ca2+, total protein and total phosphorus and α-amylase in parotid gland saliva increased(P<0.01). The concentrations of Na +, Cl-, K+, total phosphorus, total protein and α-amylase in parotid were higher than those in submandibular gland (P<0.01), and the concentration of Ca 2+ in submandibular gland saliva was significantly higher than that in parotid (P<0.001). Conclusion: The response of parotid to acid stimulation is stronger, and the secretion of submandibular gland is more stable. Acid stimulation significantly influences the concentrations of electrolytes in saliva, and the composited secretion rate is an evaluation index to reflect both flow rate and composition concentration of saliva. The parotid gland plays an important role in the secretion of total protein, total phosphorus and α-amylase in saliva, and the submandibular gland is the main source of Ca2+ in saliva.

参考文献

[1] Alvariño C, Bagan L, Murillo-Cortes J, et al. Stimulated whole salivary flow rate: the most appropriate technique for assessing salivary flow in Sjögren syndrome[J]. Med Oral Patol Oral Cir Bucal, 2021, 26(3):e404-e407.
[2] Edgar W. Saliva: its secretion, composition and functions[J]. Br Dent J, 1992, 172(8):305-312.
[3] Dawes C, Wong D. Role of saliva and salivary diagnostics in the advancement of oral health[J]. J Dent Res, 2019, 98(2):133-141.
[4] 菅朝慧, 马晓静, 包玉倩. 唾液检测在糖尿病中的临床应用进展[J]. 中华糖尿病杂志, 2020, 12(1):3.
[5] 杨玥欣, 沈夏波, 武雅静, 等. 高脂血症大鼠下颌下腺水通道蛋白2和4的表达[J]. 中国老年学杂志, 2018, 38(6):3.
[6] Werfalli S, Drangsholt M, Johnsen JM, et al. Saliva flow rates and clinical characteristics of patients with burning mouth syndrome: a case-control study[J]. Int J Oral Maxillofac Surg, 2021, 50(9):1187-1194.
[7] Delporte C, Bryla A, Perret J. Aquaporins in salivary glands: from basic research to clinical applications[J]. Int J Mol Sci, 2016, 17(2):166.
[8] Gill SK, Price M, Costa RJ. Measurement of saliva flow rate in healthy young humans: influence of collection time and mouthrinse water temperature[J]. Eur J Oral Sci, 2016, 124(5):447-453.
[9] Proctor GB, Shaalan AM. Disease-induced changes in salivary gland function and the composition of saliva[J]. J Dent Res, 2021, 100(11):1201-1209.
[10] Kondo Y, Nakamoto T, Jaramillo Y, et al. Functional differences in the acinar cells of the murine major salivary glands[J]. J Dent Res, 2015, 94(5):715-721.
[11] 王松灵, 朱宣智. 腮腺非肿瘤疾病唾液免疫球蛋白及电解质观察[J]. 中华口腔医学杂志, 1996, 31(4):198-200.
[12] Bundgaard M, Møller M, Poulsen JH. Localization of sodium pump sites in cat salivary glands[J]. J Physiol, 1977, 273(1):339-353.
[13] Dawes C, Chebib F. The influence of previous stimulation and the day of the week on the concentrations of protein and the main electrolytes in human parotid saliva[J]. Arch Oral Biol, 1972, 17(9):1289-1301.
[14] Cook D, Dinudom A, Komwatana P, et al. Patch-clamp studies on epithelial sodium channels in salivary duct cells[J]. Cell Biochem Biophys, 2002, 36(2):105-113.
[15] Almássy J, Siguenza E, Skaliczki M, et al. New saliva secretion model based on the expression of Na-K pump and K channels in the apical membrane of parotid acinar cells[J]. Pflugers Arch, 2018, 470(4):613-621.
[16] Dawes C. The effects of flow rate and duration of stimulation on the concentrations of protein and the main electrolytes in human submandibular saliva[J]. Arch Oral Biol, 1974, 19(10):887-895.
[17] Martinez J, Holzgreve H, Frick A. Micropuncture study of submaxillary glands of adult rats[J]. Pflugers Arch Gesamte Physiol Menschen Tiere, 1966, 290(2):124-133.
[18] Schneyer L, Young J, Schneyer C. Salivary secretion of electrolytes[J]. Physiol Rev, 1972, 52(3):720-777.
[19] Roussa E. Channels and transporters in salivary glands[J]. Cell Tissue Res, 2011, 343(2):263-287.
[20] Kraaij S, Brand HS, van der Meij EH, et al. Biochemical composition of salivary stones in relation to stone- and patient-related factors[J]. Med Oral Patol Oral Cir Bucal, 2018, 23(5):540-544.
[21] Maier H, Triebel C, Heidland A. The flow-rate-dependent excretion of ionized calcium in pilocarpine-stimulated human submandibular saliva[J]. Arch Oral Biol, 1983, 28(10):907-909.
[22] Ambudkar I. Calcium signaling defects underlying salivary gland dysfunction[J]. Biochim Biophys Acta Mol Cell Res, 2018, 1865(11):1771-1777.
[23] Odanaka H, Obama T, Sawada N, et al. Comparison of protein profiles of the pellicle, gingival crevicular fluid, and saliva: possible origin of pellicle proteins[J]. Biol Res, 2020, 53(1):3.
[24] Helmerhorst EJ, Oppenheim FG. Saliva: a dynamic proteome[J]. J Dent Res, 2007, 86(8):680-693.
文章导航

/