论著

上颌中切牙全瓷冠牙体预备学习曲线的预测、分析与应用

  • 吴思妤 ,
  • 李娅宁 ,
  • 张晓 ,
  • 吕珑薇 ,
  • 刘云松 ,
  • 叶红强 ,
  • 周永胜
展开
  • 北京大学口腔医学院·口腔医院修复科, 国家口腔医学中心, 国家口腔疾病临床医学研究中心, 口腔生物材料和数字诊疗装备国家工程研究中心, 口腔数字医学北京市重点实验室, 北京 100081

收稿日期: 2022-10-06

  网络出版日期: 2023-01-31

基金资助

北京大学口腔医学院教育教学改革项目(2022-ZD-01);北京大学医学部教育教学研究课题(2022-ZD-05);北京市住院医师规范化培训质量提高项目(2022-TGXM-02)

Prediction, analysis and application of learning curve of tooth preparation for all ceramic crowns of maxillary central incisors

  • Si-yu WU ,
  • Ya-ning LI ,
  • Xiao ZHANG ,
  • Long-wei LV ,
  • Yun-song LIU ,
  • Hong-qiang YE ,
  • Yong-sheng ZHOU
Expand
  • Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China

Received date: 2022-10-06

  Online published: 2023-01-31

Supported by

the Teaching Reformation Fund of Peking University School and Hospital of Stomatology(2022-ZD-01);Peking University Health Science Center Medical Education Research Funding Project(2022-ZD-05);the Quality Improvement Project of Standardized Training of Residents of Beijing(2022-TGXM-02)

摘要

目的: 运用改良Wright学习曲线模型预测参加口腔住院医师规范化培训的研究生在仿真头颅模型上进行上颌中切牙全瓷冠牙体预备的学习曲线, 分析其特点, 并用于评价牙体预备的效果。方法: 选取12名参加口腔住院医师规范化培训的研究生在仿真头颅模型上进行4次右上中切牙树脂牙的全瓷冠牙体预备, 预备体由3名具有10年以上口腔修复经验的专家按照预备量、外形轮廓、聚合度、肩台、边缘线角及位置、邻牙损伤和预备时长等方面进行评价。根据4次牙体预备分数计算牙体预备的学习率, 用改良Wright学习曲线函数预测牙体预备的学习曲线。参考北京市住院医师规范化培训技能考核要求, 以80分作为合格的考核标准, 推算牙体预备技能达到考核标准(80分)所需的最少训练次数, 分析学习曲线的特点, 评价牙体预备的效果。结果: 4次牙体预备的分数分别为(64.03±7.80)分、(71.40±6.13)分、(74.33±5.96)分、(75.98±4.52)分, 学习率为(106±4)%, 学习曲线呈上升趋势。第5~13次牙体预备预测分数与考核标准的差异无统计学意义(P > 0.05), 第14次的牙体预备预测分数高于考核标准(P < 0.05)。结论: 参加口腔住院医师规范化培训的研究生在仿真头颅模型上进行上颌中切牙全瓷冠牙体预备的学习曲线呈上升趋势, 学习曲线预测14次是牙体预备分数高于考核标准所需的最少训练次数。

本文引用格式

吴思妤 , 李娅宁 , 张晓 , 吕珑薇 , 刘云松 , 叶红强 , 周永胜 . 上颌中切牙全瓷冠牙体预备学习曲线的预测、分析与应用[J]. 北京大学学报(医学版), 2023 , 55(1) : 108 -113 . DOI: 10.19723/j.issn.1671-167X.2023.01.016

Abstract

Objective: To predict the learning curve of tooth preparation for all ceramic crowns of maxillary central incisors on phantom head simulators for graduate students participating in standardized dental resident training based on the modified Wright learning curve model, then to analyze and applicate the learning curve. Methods: Twelve graduate students participating in standardized dental resident training were selected to prepare the resin maxillary central incisors on phantom head simulators for all ceramic crowns 4 times. The results of preparation were evaluated by 3 prosthetic experts with at least 10 years' experience focusing on the reduction, contour, taper, shoulder, finish line, margin placement, adjacent tooth injury, and preparation time for tooth preparation. The learning rate of tooth preparation was calculated by scores of tooth preparation of 4 times. The learning curve of tooth preparation was predicted based on the modified Wright learning curve model. According to the criteria of standardized training skill examinations for dental residents in Beijing, 80 was taken as the qualified standard score. The minimum training times for tooth preparation to satisfy the qualified standard score (80) was calculated, to analyze the characteristics of learning curve and evaluate the effectiveness of tooth preparation. Results: The scores of 4 tooth preparation were 64.03±7.80, 71.40±6.13, 74.33±5.96, and 75.98±4.52, respectively. The learning rate was (106±4)%, which showed the learning curve an upward trend. There were no significant differences between the qualified standard score and the predicted scores of tooth preparation from the 5th preparation to the 13th preparation (P > 0.05). The predicted score of the 14th preparation was higher than the qualified standard score (P < 0.05). Conclusion: The trend of the learning curve of tooth preparation for all ceramic crowns of maxillary central incisors on phantom head simulators for graduate students participating in standardized dental resident training is upward, which predicts the minimum training times higher than the qualified standard score is 14 times.

参考文献

1 周永胜, 江泳, 徐军, 等. 仿真头颅模型在口腔修复学临床前期教学中的应用[J]. 中华医学教育杂志, 2006, 26 (3): 74- 76.
2 刘星纲, 刘利霞, 魏永杰. 浅析研究生修复实习中牙体预备的学习曲线[J]. 北京口腔医学, 2018, 26 (4): 236- 237.
3 Wright TP . Factors affecting the cost of airplanes[J]. J Astronaut Sci, 1936, 3 (4): 122- 128.
4 Sun TM , Lan TH , Pan CY , et al. Dental implant navigation system guide the surgery future[J]. Kaohsiung J Med Sci, 2018, 34 (1): 56- 64.
5 Lim JH , Park JM , Kim M , et al. Comparison of digital intraoral scanner reproducibility and image trueness considering repetitive experience[J]. J Prosthet Dent, 2018, 119 (2): 225- 232.
6 Ben-Gal G , Katorza L , Weiss EI , et al. Testing motor learning curves among dental students[J]. J Dent Educ, 2017, 81 (10): 1171- 1178.
7 Son K , Lee WS , Lee KB . Prediction of the learning curves of 2 dental CAD software programs[J]. J Prosthet Dent, 2019, 121 (1): 95- 100.
8 Son K , Lee KB . Prediction of learning curves of 2 dental CAD software programs, part 2: Differences in learning effects by type of dental personnel[J]. J Prosthet Dent, 2020, 123 (5): 747- 752.
9 Goodacre CJ , Campagni WV , Aquilino SA . Tooth preparations for complete crowns: An art form based on scientific principles[J]. J Prosthet Dent, 2001, 85 (4): 363- 376.
10 赵铱民. 口腔修复学[M]. 7版 北京: 人民卫生出版社, 2012: 96- 97.
11 周永胜. 口腔修复学[M]. 3版 北京: 北京大学医学出版社, 2020: 87- 89.
12 Al Amri MD , Sherfudhin HR , Habib SR . Effects of evaluator's fatigue and level of expertise on the global and analytical evaluation of preclinical tooth preparation[J]. J Prosthodont, 2018, 27 (7): 636- 643.
13 李坚, 李泽. 学习曲线与进步函数: 考虑技术进步因素的优化方法[J]. 水利电力机械, 1997, (1): 3- 9.3-9, 11
文章导航

/